Inventory of Rare Plants and Noxious Weeds Along the Snake River Corridor in Hells Canyon—Weiser, Idaho, to the Salmon River

> Randall Krichbaum Senior Environmental Scientist Eagle Cap Consulting Inc.

Technical Report Appendix E.3.3-2

Hells Canyon Complex FERC No. 1971 October 2000

Copyright © 2003 by Idaho Power Company

Table of Contents

LIST OF TABLES III LIST OF FIGURES III LIST OF APPENDICES IV ABSTRACT 1 PART 1: INTRODUCTION 2 1.1.1 OVERVIEW 2 1.1.2 Study Area 2 1.1.3 Environmental Setting 3 1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS 6 2.1.1 Prefield Review 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 25 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27	TABLE OF	CONTENTS	I
LIST OF APPENDICES. IV ABSTRACT 1 PART 1: INTRODUCTION 2 1.1 OVERVIEW 2 1.1.1 Project Description 2 1.1.2 Study Area 2 1.1.3 Environmental Setting 3 1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS 6 2.1.1 Prefield Review 6 2.1.1 Prefield Review 6 2.1.1 Prefield Review 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2.1 General Considerations 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 25 <th>LIST OF TA</th> <th>ABLES</th> <th></th>	LIST OF TA	ABLES	
ABSTRACT 1 PART 1: INTRODUCTION 2 1.1 OVERVIEW 2 1.1.1 Project Description 2 1.1.2 Study Area 2 1.1.3 Environmental Setting 3 1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS 6 2.1.1 Prefield Review 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 31.1 3.1.2 Field Investigation 2	LIST OF FI	GURES	
PART 1: INTRODUCTION	LIST OF A	PPENDICES	IV
1.1 OVERVIEW. 2 1.1.1 Project Description. 2 1.1.2 Study Area. 2 1.1.3 Environmental Setting. 3 1.1.4 Subsampling Scheme. 4 PART 2: NOXIOUS WEEDS. 6 2.1 METHODS 6 2.1.1 Prefield Review. 6 2.1.2 Field Investigation. 6 2.1.3 Data Collection. 7 2.1.4 Statistical Analyses. 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.7 Interpretation of Results 25 2.8 Summary of Findings 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 <	ABSTRACT	۲	1
1.1.1 Project Description. 2 1.1.2 Study Area. 2 1.1.3 Environmental Setting. 3 1.1.4 Subsampling Scheme. 4 PART 2: NOXIOUS WEEDS. 6 2.1 METHODS. 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation. 6 2.1.3 Data Collection. 7 2.1.4 Statistical Analyses. 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 31.1 3.1.1 Prefield Review 32 3.2.2 Field Investigation 32 <tr< th=""><th>PART 1: IN</th><th>TRODUCTION</th><th></th></tr<>	PART 1: IN	TRODUCTION	
1.1.2 Study Area. 2 1.1.3 Environmental Setting 3 1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS	1.1 OV	ERVIEW	
1.1.3 Environmental Setting 3 1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS 6 2.1 METHODS 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 27 3.1 Prefield Review 27 3.1.1 Prefield Review 27 3.1.1 Prefield Review 27 3.1.1 Prefield Review 27 3.1.1 Prefield Review 32 3.2	1.1.1	Project Description	
1.1.4 Subsampling Scheme 4 PART 2: NOXIOUS WEEDS	1.1.2	Study Area	
PART 2: NOXIOUS WEEDS			
2.1 METHODS 6 2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.1.1 General Considerations 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2.2 Field Investigation 33 3.2.2.1 Prefield Review 32 3.2.2 Field Investigation 33 <tr< td=""><td>1.1.4</td><td>Subsampling Scheme</td><td></td></tr<>	1.1.4	Subsampling Scheme	
2.1.1 Prefield Review 6 2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses. 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2.2 Field Investigation 32 3.2.2 Field Investigation 33 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33<	PART 2: NO	DXIOUS WEEDS	
2.1.2 Field Investigation 6 2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 <	2.1 ME	THODS	6
2.1.3 Data Collection 7 2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 <td< td=""><td>2.1.1</td><td>Prefield Review</td><td>6</td></td<>	2.1.1	Prefield Review	6
2.1.4 Statistical Analyses 10 2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus gatalus (stalk-leaved monkey-flower)	2.1.2	Field Investigation	6
2.2 RESULTS AND DISCUSSION 12 2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ss. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus statulus (stalk-leaved monkey-flower) 37 3.2.2.4 Teucrium canadenese var. occidentale (2.1.3	Data Collection	7
2.2.1 General Considerations 12 2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 26 PART 3: RARE PLANTS 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus gatulus (stalk-leaved monkey-flower) 37 3.2.2.4 Teucrium candense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (boland	2.1.4	Statistical Analyses	
2.2.2 Prefield Review Results 13 2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Field Investigation 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.4 Teucrium canadense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (bolandra) 39	2.2 RES	SULTS AND DISCUSSION	
2.2.3 Field Investigation Results 13 2.2.4 Correlation of Predictors 14 2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.7 Interpretation of Results 25 2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower) 37 3.2.2.4 Teucrium canadense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (bolandra) 39	2.2.1	General Considerations	
2.2.4Correlation of Predictors142.2.5Statistical Findings Summary142.2.6Species Analysis152.7Interpretation of Results252.8Summary of Findings26PART 3: RARE PLANTS273.1METHODS3.1METHODS273.1.1Prefield Review273.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2.5Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	2.2.2	Prefield Review Results	
2.2.5 Statistical Findings Summary 14 2.2.6 Species Analysis 15 2.7 Interpretation of Results 25 2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2 Field Investigation 33 3.2.2.1 Cyperus schweinitzi (Schweinitz flatsedge) 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower) 35 3.2.2.4 Teucrium canadense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (bolandra) 39	2.2.3	Field Investigation Results	
2.2.6Species Analysis152.2.7Interpretation of Results252.2.8Summary of Findings26PART 3: RARE PLANTS273.13.1METHODS273.1.1Prefield Review273.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.5Bolandra oregana (bolandra)39	2.2.4	Correlation of Predictors	
2.2.7Interpretation of Results252.2.8Summary of Findings26PART 3: RARE PLANTS3.1METHODS273.1.1Prefield Review273.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.5Bolandra oregana (bolandra)39	2.2.5	Statistical Findings Summary	
2.2.8 Summary of Findings 26 PART 3: RARE PLANTS 27 3.1 METHODS. 27 3.1.1 Prefield Review 27 3.1.2 Field Investigation 27 3.1.3 Data Collection. 28 3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2 Field Investigation 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower) 37 3.2.2.4 Teucrium canadense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (bolandra) 39	2.2.6	Species Analysis	
PART 3: RARE PLANTS273.1 METHODS.273.1.1 Prefield Review273.1.2 Field Investigation273.1.3 Data Collection283.2 RESULTS323.2.1 Prefield Review323.2.2 Field Investigation333.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3 Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4 Teucrium canadense var. occidentale (American wood sage)383.2.2.5 Bolandra oregana (bolandra)39	2.2.7	Interpretation of Results	
3.1METHODS.273.1.1Prefield Review273.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	2.2.8	Summary of Findings	
3.1.1Prefield Review273.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	PART 3: RA	ARE PLANTS	
3.1.2Field Investigation273.1.3Data Collection283.2RESULTS323.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	3.1 ME	THODS	
3.1.3 Data Collection.283.2 RESULTS.323.2.1 Prefield Review.323.2.2 Field Investigation.333.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge).333.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox).353.2.2.3 Mimulus patulus (stalk-leaved monkey-flower).373.2.2.4 Teucrium canadense var. occidentale (American wood sage).383.2.2.5 Bolandra oregana (bolandra).39	3.1.1	Prefield Review	
3.2 RESULTS 32 3.2.1 Prefield Review 32 3.2.2 Field Investigation 33 3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge) 33 3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox) 35 3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower) 37 3.2.2.4 Teucrium canadense var. occidentale (American wood sage) 38 3.2.2.5 Bolandra oregana (bolandra) 39	3.1.2	Field Investigation	
3.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	3.1.3	•	
3.2.1Prefield Review323.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39	3.2 RE		32
3.2.2Field Investigation333.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)333.2.2.2Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)353.2.2.3Mimulus patulus (stalk-leaved monkey-flower)373.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39			
3.2.2.1Cyperus schweinitzii (Schweinitz flatsedge)			
3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)			
3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower)			
3.2.2.4Teucrium canadense var. occidentale (American wood sage)383.2.2.5Bolandra oregana (bolandra)39			
3.2.2.5 Bolandra oregana (bolandra)			
3.3 DISCUSSION	3.3 DIS	CUSSION	

3.3.1	General Considerations	
3.3.2	Potential Impacts to Species of Concern	
REFERENC	ES	
TABLES		
FIGURES		
APPENDICH	ES	

List of Tables

TABLE 1: NOXIOUS WEEDS AND OTHER INVASIVE SPECIES CONSIDERED DURING THE STUDY	47
TABLE 2: TOTAL NUMBER OF WEED POPULATIONS FOUND	50
TABLE 3: WEED SPECIES PRESENCE BY REACH	52
TABLE 4: AVERAGE TOTAL NET AREA OCCUPIED BY WEED POPULATIONS PER UNIT SURVEYED	54
TABLE 5: FACTORS AFFECTING THE PRESENCE OF WEED SPECIES	56
TABLE 6: FACTORS AFFECTING THE SIZE OF WEED POPULATIONS	58
TABLE 7: SUMMARY OF NOXIOUS WEED FINDINGS	60
TABLE 8: PLANT SPECIES OF CONCERN FOR THE RARE PLANT INVESTIGATION	61
TABLE 9: RARE PLANT SPECIES LOCATED	64
TABLE 10: RARE PLANT POPULATIONS FOUND WITHIN THE STUDY AREA	65

List of Figures

FIGURE 1: STUDY AREA MAP	
FIGURE 2: NOXIOUS WEED DATA COLLECTION FORM	70
FIGURE 3: MAP OF SCOTCH THISTLE POPULATIONS	71
FIGURE 4: MAP OF FALSE INDIGO POPULATIONS	72
FIGURE 5: MAP OF COMMON HOUNDSTOUNGE POPULATIONS	73
FIGURE 6: MAP OF ST. JOHN'S WORT POPULATIONS	74
FIGURE 7: MAP OF BROADLEAVED PEPPERWEED POPULATIONS	75
FIGURE 8: MAP OF FIELD MORNING GLORY POPULATIONS	76
FIGURE 9: MAP OF MEDUSAHEAD WILDRYE POPULATIONS	77
FIGURE 10: MAP OF REED CANARYGRASS POPULATIONS	78
FIGURE 11: MAP OF PUNCTUREVINE POPULATIONS	79
FIGURE 12: MAP OF POISON HEMLOCK POPULATIONS	80
FIGURE 13: MAP OF BULL THISTLE POPULATIONS	81
FIGURE 14: MAP OF WHITETOP POPULATIONS	82
FIGURE 15: MAP OF CANADA THISTLE POPULATIONS	83
FIGURE 16: MAP OF TAMARISK/ANNUAL RAGWEED/RUSSIAN OLIVE POPULATIONS	
FIGURE 17: MAP OF ERECT CINQUEFOIL/DALMATIAN TOADFLAX/RUSH SKELETONWEED POPULATIONS	
FIGURE 18: MAP OF KOCHIA/PURPLE LOOSESTRIFE/DODDER POPULATIONS	
FIGURE 19: MAP OF MEDITERRANEAN SAGE/COMMON HORSETAIL/QUACKGRASS POPULATIONS	
FIGURE 20: MAP OF YELLOW NUT SEDGE/DIFFUSE KNAPWEED/JOINTED GOATGRASS POPULATIONS	
FIGURE 21: MAP OF LEAFY SPURGE/COMMON CRUPINA/WILD CARROT/JAPANESE KNOTWEED POPULATIONS	
FIGURE 22: PHOTO OF QUACKGRASS IN UNIT 181-1E	90
FIGURE 23: PHOTO OF FALSE INDIGO IN UNIT 108-3E	
FIGURE 24: PHOTO OF POISON HEMLOCK IN UNIT 081-4E	
FIGURE 25: PHOTO OF DALMATIAN TOADFLAX IN UNIT 090-3E	
FIGURE 26: PHOTO OF SCOTCH THISTLE IN UNIT 106-1E	
FIGURE 27: PHOTO OF REED CANARYGRASS IN UNIT 103-3W	92
FIGURE 28: RARE PLANT DATA COLLECTION FORM	93
FIGURE 29: MAP OF SCHWEINITZ FLATSEDGE POPULATIONS	
FIGURE 30: MAP OF HAZEL'S PRICKLY PHLOX POPULATIONS	
FIGURE 31: MAP OF BOLANDRA/STALK-LEAVED MONKEY FLOWER/AMERICAN WOOD SAGE POPULATIONS	
FIGURE 32: MAP OF PORCUPINE SEDGE POPULATIONS	
FIGURE 33: PHOTO OF SCHWEINITZ FLATSEDGE	
FIGURE 34: PHOTO OF SCHWEINITZ FLATSEDGE HABITAT	
FIGURE 35: PHOTO OF HAZEL'S PRICKLY PHLOX	
FIGURE 36: PHOTO OF HAZEL'S PRICKLY PHLOX HABITAT	99

. 100
. 100
. 101
. 101
. 102
. 102
. 103
•

List of Appendices

APPENDIX 1: CUMULATIVE PLANT SPECIES LISTS

APPENDIX 2: NOXIOUS WEED DATA FORMS (ATTACHED AS FIVE SEPARATE VOLUMES)

APPENDIX 3: TOPOGRAPHIC MAPS SHOWING WEED POPULATIONS (ATTACHED SEPARATELY)

APPENDIX 4: CORRELATION MATRIX OF DISTURBANCE TYPES FOR WEED INVESTIGATION

APPENDIX 5: CONTINGENCY TABLE ANALYSIS OF DISTRIBUTION OF DISTURBANCE ACROSS REACHES

APPENDIX 6: STATISTICAL RESULTS - ARRANGED BY WEED SPECIES

APPENDIX 7: PROPORTION OF SITES FOR EACH WEED SPECIES WITH DISTURBANCE TYPES

APPENDIX 8: RARE PLANT OBSERVATION FORMS (ATTACHED SEPARATELY)

Abstract

Idaho Power Company (IPCo) is currently in the process of relicensing three hydroelectric dams (Brownlee, Oxbow, and Hells Canyon) with the Federal Energy Regulatory Commission. As part of the relicensing application, IPCo is required to provide a description of the natural resources of the project area and its vicinity, including downstream reaches affected by the project. In order to address rare plants and noxious weeds, IPCo has commissioned a study of these resources within the project vicinity. The study has been completed, and the results are the subject of this report.

For the purposes of this study, 'noxious weeds' were defined as those on either Idaho or Oregon's state noxious weed lists. In addition, four invasive riparian species were also considered. In consultation with the various affected agencies, IPCo developed a list of rare plant species to be targeted by this investigation. These were typically riparian species which were of special concern to the agencies involved, and which were known, or suspected, to occur in the Hells Canyon study corridor.

The study area took in both shores of the Snake River and Reservoir complex, from the confluence of the Salmon River upstream to Weiser, Idaho (a distance of approximately 262 river kilometers). The lateral extent of the study area was 50 meters from the mean high water mark. A subsampling scheme was used for this study which surveys one quarter-mile segment in every shoreline mile, for a total of 405 survey units (approximately 25% of the total corridor).

Field crews conducted surveys in the area from August 4 through September 28, 1998, and from April 19 through June 3, 1999. Data on habitat preferences, disturbance factors, distribution, phenology, and other parameters were collected for each weed and rare plant population found.

A total of 1,905 populations of weed species of concern were recorded for the project. Of the 405 total units surveyed, 397 (or 98%) contained at least one weed population. The unimpounded reach below Hells Canyon Dam had the lowest average number of different weed species per unit (2.4 species/unit), while the Oxbow Reservoir reach had the highest (8.4 species/unit). *Onopordum acanthium* (Scotch thistle) was found in the most units (226), followed by *Amorpha fruticosa* (false indigo) (195 units), *Cynoglossum officinale* (common houndstounge) (156 units), and *Hypericum perforatum* (St. John's wort) (145 units). *Taeniatherum caput-medusae* (medusahead wildrye) populations covered the greatest net area within the units surveyed, averaging 300 square meters per unit.

Forty-seven previously unreported populations of six rare plant species of concern were located during the investigation: *Cyperus schweinitzii* (Schweinitz flatsedge) – 21 sites; *Carex hystricina* (porcupine sedge) – 10 sites; *Bolandra oregana* (Oregon bolandra) – 8 sites; *Leptodactylon pungens* ssp. *hazeliae* (Hazel's prickly phlox) – 6 sites; *Mimulus patulus* (stalk-leaved monkey flower) – 1 site; and *Teucrium canadense* var. *occidentale* (American wood sage) – 1 site. No rare plant populations were found on the two southernmost reaches (Brownlee Reservoir and Weiser reaches).

PART 1: INTRODUCTION

1.1 OVERVIEW

1.1.1 Project Description

Idaho Power Company (IPCo) is in the process of conducting studies in support of its application to relicense Brownlee, Oxbow, and Hells Canyon Dams with the Federal Energy Regulatory Commission (FERC). These projects are collectively referred to as the Hells Canyon Complex (FERC Project Number 1971). The dams are located on the Snake River along the Idaho-Oregon border. FERC requires the relicensing documents to include a description of the natural resources of the project and its vicinity, including downstream areas affected by the dams. As part of IPCo's fulfillment of this requirement, the company has commissioned an investigation of rare plants and noxious weeds in the project vicinity. This study has been completed, and the results are the subject of this Technical Report.

The noxious weed portion of this investigation was designed to provide descriptive as well as predictive data on a variety of plant species considered to be noxious weeds by the States of Idaho and Oregon. In addition, several species known to be invasive riparian associates were considered during the course of this study. Data were collected for a number of descriptive parameters aimed at characterizing the distribution, habitat requirements, and phenology of noxious weed species within the project area. In addition, information was recorded to allow for the determination of the likely factors that influence the growth and spread of these species.

The rare plant portion of this investigation was designed to provide similar descriptive data on a selected group of riparian plant species listed as, or considered potential candidates for listing as, endangered, threatened, or sensitive by one or more agencies of the Federal Government, the State of Idaho, and/or the State of Oregon. Data were collected, at the population level, for a number of descriptive parameters aimed at characterizing the distribution, habitat requirements, and phenology of rare plant species within the project area.

1.1.2 Study Area

For the purposes of this investigation, the study area consists of approximately 262 river kilometers (km) along both shores of the Snake River, from the confluence of the Salmon River to Weiser, Idaho (Figure 1 on page 69). In addition, approximately 14 river km of the Powder River arm of Brownlee Reservoir are also included as part of the study area. To facilitate discussion and analysis, the study area has been broken into five reaches: an unimpounded reach above the existing reservoir complex (Weiser reach), three reservoir reaches (Brownlee, Oxbow, and Hells Canyon Reservoir reaches), and an unimpounded downstream reach (Hells Canyon Downstream reach). The Weiser reach extends approximately 19 km, from river mile (RM) 351.2 to 339.2. The Brownlee Reservoir reach extends approximately 90 km, from RM 339.2 to 283.7 (including the segment along the Powder River arm of the reservoir). The Oxbow

Reservoir reach extends approximately 23 km, from RM 283.7 to 269.5. The Hells Canyon Reservoir reach extends approximately 35 km, from RM 269.5 to 247.5. The Hells Canyon Downstream reach extends approximately 95 km, from RM 247.5 to the confluence of the Salmon River at RM 188.2. In most cases, the surveyed area extended laterally approximately 50 meters (m) beyond the Mean High Water Mark (MHWM). However, for 63 units surveyed during the 1998 field season, the lateral extent was 50 m beyond the current shoreline. In addition, the entire flow zone (defined as the exposed area below the MHWM), and any zone of emergent vegetation, were also included in the lateral extent of the study area.

1.1.3 Environmental Setting

The topography of the project area is generally rugged, as the Snake River winds northward through progressively deeper canyon country. Steep, incised slopes with abundant rock outcrops make up the majority of the study area along the Hells Canyon Downstream reach and the three reservoir reaches. In contrast, the Weiser reach is flat and relatively cobble-free as the river leaves the northwestern tip of the Snake River Plain.

Elevations in the study area range from approximately 268 m above mean sea level at the confluence with the Salmon River to approximately 640 m at Weiser, Idaho. Most of the elevation gain takes place in the northern half of the study area.

The region is complex geologically, as the Snake River cuts through the boundary between several exotic terranes and the ancient North American continent. In the four northernmost reaches of the study area, Cenezoic Columbia River flood basalts cap numerous formations of Mesozoic and late Paleozoic igneous and sedimentary rocks. In addition, metamorphism of the older rocks has added to the area's geologic diversity (Vallier 1998). Soils in these four reaches tend to be shallow and rocky. At the south end of the study area, the Weiser reach is dominated by semi-consolidated Cenezoic sediments, which have produced deep sandy loam and silt loam soils (Rasmussen 1976).

Two weather reporting stations are located in the project vicinity, representing the climate at roughly the middle and southern end of the study area. The Brownlee Dam station is located slightly south of the middle of the study area, and reports an average annual maximum temperature of 19° Celsius (C), and an average minimum of 7°C. The average total annual precipitation is 46 centimeters (cm), and the average total annual snowfall is also 46 cm (WRCC 1998*a*). The Weiser 2 SE Station is located at the southern end of the study area. The station reports an average annual maximum temperature of 18°C, and an average minimum of 2°C. Average total annual precipitation is 28 cm, and the average total annual snowfall is 48 cm (WRCC 1998*b*).

Natural upland vegetation in the study area is typified by bunchgrass and shrub-steppe communities. Common associates include *Agropyron spicatum* (bluebunch wheatgrass), *Hordeum jubatum* (foxtail barley), *Achillea millefolium* (common yarrow), *Artemisia ludoviciana* (prairie sage), *Celtis reticulata* (hackberry), and *Purshia tridentata* (bitter-brush). In many places, these communities have been degraded by intensive livestock grazing (as well as other

disturbance factors) to the point where relatively few native species remain. The disturbed communities are in an early seral condition, dominated by non-native annual grasses such as *Bromus* spp. (brome), *Poa bulbosa* (bulbous bluegrass), and *Taeniatherum caput-medusae* (medusahead wildrye). Introduced forbs such as *Verbascum* spp. (mullein), *Sisymbrium altissimum* (Jim Hill mustard), and *Dipsacus sylvestris* (teasel) are also common associates in disturbed areas.

Vegetative communities adjacent to the Snake River and the reservoirs are diverse. In many places the upland vegetation grows directly along the shoreline. However, various riparian assemblages do occur, although most form a relatively narrow band between the river and the dry upland habitats. Common riparian associates include native species such as *Rosa woodsii* (Wood's rose) and *Salix* spp. (willow), as well as non-natives such as *Amorpha fruticosa* (false indigo), *Phalaris arundinacea* (reed canarygrass), *Elaeagnus angustifolia* (Russian olive), *Ulmus* spp. (elm), and *Fraxinus* spp. (ash).

1.1.4 Subsampling Scheme

Because of the large size of the project area, a subsampling scheme was employed to select a representative proportion of the project area for survey. Shoreline miles were delineated on both sides of the river using the IPCo Geographic Information System (GIS). For the study, the miles were numbered beginning with Shoreline Mile (SM) 10 at the confluence of the Salmon River. Each shoreline mile was numbered consecutively upstream to the other end of the study area at Weiser, Idaho, ending with SM 194 on the East (or Idaho) side of the river, and SM 214 on the West (or Oregon) side. The 20 mile difference in the two shoreline lengths was primarily due to the inclusion of the Powder River Arm on the Oregon side of Brownlee Reservoir.

Each shoreline mile was broken into four, quarter-mile segments and numbered from one to four. For example, the third quarter-mile segment in SM 119 on the Oregon side of Brownlee Reservoir is designated as Unit 119-3W. Units on the Idaho side of the river are designated with an 'E' (*e.g.* Unit 119-3E). One segment from each shoreline mile was then randomly selected as a unit for field survey, (a total of 390 quarter-mile survey units).

In addition, a number of islands are present in the study area, primarily at the upper end of the Brownlee Reservoir reach and throughout the Weiser reach. Quarter-mile survey units were randomly selected for all islands longer than 400 m. Starting at the downstream end of each island, quarter-mile segments were delineated around the perimeter, and numbered consecutively in a counterclockwise direction. Segments were then randomly chosen for survey, selecting approximately one quarter-mile segment for every mile. Each island longer than 400 m was assigned at least one survey unit. Islands are referred to by the codes IPCo uses for other vegetation sampling studies in the area. For example, there are two islands in the Darrows Island complex. The first is referred to as DARA and the second is referred to as DARB. Because the second quarter-mile segment was randomly selected for survey on the first Darrows Island, the survey unit was designated as DARA-02.

There are a total of 15 island survey units within the project area: one within the Hells Canyon Reservoir reach, four at the upper end of the Brownlee Reservoir reach, and the remaining nine within the Weiser reach. These 15 island units, and the 390 shoreline survey units, combine for a total of 405 survey units within the study area (approximately 25% of the corridor area). The total number of survey units within each reach is as follows: Hells Canyon Downstream reach - 126 units; Hells Canyon Reservoir reach - 54 units; Oxbow Reservoir reach - 26 units; Brownlee Reservoir reach - 166 units; and Weiser reach - 33 units.

PART 2: NOXIOUS WEEDS

2.1 METHODS

2.1.1 Prefield Review

In consultation with agency personnel, IPCo developed a list of species which were to be considered during the study. For the purposes of this investigation, 'noxious weeds' were defined as those species contained on either Idaho or Oregon's state noxious weed lists (Oregon Department of Agriculture 1996, State of Idaho 1996). In addition, four invasive riparian species were added to the final list for consideration during this study, although they are not deemed 'noxious weeds' by either Idaho or Oregon. These are: *Amorpha fruticosa* (false indigo), *Elaeagnus angustifolia* (Russian-olive), *Phalaris arundinacea* (reed canarygrass), and *Tamarix* spp. (tamarisk). From this list of 101 species, 41 were known, or highly suspected, to occur in the study area. These 41 species were the focus of this study, although data were collected on any of the 101 noxious weed species considered to be noxious weeds for the purposes of this investigation. Although some of these species are considered to be noxious weeds in only Oregon, or only Idaho, data were collected for all populations of these species encountered in either State.

Prior to the field surveys, a review of available literature and other sources was conducted to gain information on the noxious weed species potentially located within the project area. Taxonomic keys (Hitchcock *et al.* 1955-1969, Hitchcock and Cronquist 1973, Hickman 1993), reports from previous studies in the area (Burton 1993*a*,*b*), species guides (Whitson *et al.* 1992), and plant lists (US Forest Service 1994, Eagle Cap Consulting Inc. 1998) were collected and reviewed to provide distribution, identification, and habitat information regarding the species of concern.

2.1.2 Field Investigation

Field surveys of the project area were conducted over two field seasons. Starting August 4, 1998, crews began surveying Oxbow Reservoir and lower Brownlee Reservoir, moving down to Hells Canyon Reservoir by the later half of August. Two raft trips took place August 31 through September 14 to survey sections of the Hells Canyon Downstream reach. Also during September, crews inventoried sections on upper Brownlee Reservoir and the Weiser reach. Of the total 405 units within the study area, 266 (65.7%) were surveyed for noxious weeds during the 1998 field season. The remaining 139 units (34.3% of the total) were surveyed from April 19 through June 3, 1999. Crews completed work on the Brownlee Reservoir and Weiser reaches during this time. In addition, two raft trips were conducted between May 3 and May 23 to complete the survey of units on the Downstream reach.

Units were accessed either by foot or by boat. Where foot access was used, the surveyor (or surveyors) began by walking the length of the unit, making either written or mental notes on the

location of any noxious weed species present. Special care was taken to search all high probability weed habitats thoroughly (*e.g.* roadsides, flow zones, trails). If noxious weeds were found, the surveyor(s) then returned to each population to fill out a Noxious Plant Observation Form (Figure 2 on page 70). For the units that were accessed by boat, the procedure was similar, differing only in the initial search phase. The surveyors began by making one pass in the boat, cruising slowly along the shoreline of the unit. As they moved along, they visually searched the unit (with binoculars in most instances), noting any noxious weeds or high probability weed habitat. Then, if necessary, the boat was beached so that the habitat could be surveyed by foot and any noxious weed populations located could be recorded.

2.1.3 Data Collection

The Noxious Plant Observation Form (Figure 2 on page 70) was used for all field data collection. A description of the data collected and the methods used in obtaining these data are presented below.

Common Name, Scientific Name, Species Code: The authority used for most species names was *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1973). Updated taxonomy was also referenced in *The Jepson Manual* (Hickman 1993). Species codes were based on IPCo's species code book dated March 6, 1998.

Site Mapped: This box was checked when mapping of the unit was complete. Each population was mapped in the field with a sketch map drawn on the back of the data sheet. In the evening, populations were also mapped onto copies of US Geological Service (USGS) 7.5" Quadrangle maps. Where populations extended out of the unit (either up the slope or at either end), arrows were drawn on the sketch map to indicate continuance.

Tentative Site Number: Each site was numbered with an 11 character code (*e.g.* RKM04089802). The first three characters are the initials of the botanist recording the population. The next six digits are the date of collection (DDMMYY). The final two digits are the consecutive population number for that recorder on that day of the year.

Recorder(s): The initials of each botanist collecting data for the population, with the recorder's initials first.

Date, Time: Date format was (DDMMYY), and the time was recorded in military time to the nearest 15 minute interval.

Photo and Roll Number: One color slide photograph was taken at a representative location for each population. Each photograph was identified by a seven character code (*e.g.* RKM01-03). The first three characters are the initials of the surveyor taking the photograph. The following four-number sequence corresponds to the consecutive roll and individual photo numbers, respectively, taken by that surveyor.

Quad Name: USGS 7.5" quadrangle map name.

Slope: The slope at each site was measured using a clinometer or was estimated visually.

GPS File, UTM Coords, Elev.: For each site, a Global Positioning System (GPS) point was recorded at the approximate center of the population using Trimble[®] GeoExplorer GPS tracking units. On a periodic basis this information was downloaded to a portable computer, and the files were differentially corrected using base data obtained from either the McCall, Idaho base station, or the Burns, Oregon base station. After correction, the UTM coordinates and elevation above mean sea level (derived from the GPS unit) were entered in these fields. In certain instances, the data were not correctable. In these cases the uncorrected UTM coordinates were recorded. In situations where the GeoExplorer units were unable to track sufficient satellites, Garmin[®] 12XL GPS units were used to record uncorrected data. Occasionally, when GPS data were missing for a population, the UTM coordinates were derived from the USGS quad sheets. In all cases where UTM data were not differentially corrected, an appropriate note was recorded in the **Comment** field explaining the source of the UTM coordinates.

Asp: The general aspect of the population was recorded at each site. Where the aspect changes throughout a population, the dominant aspect was recorded.

Max El, Min El, Max Dist, Min Dist: The minimum and maximum elevations and distances from the MHWM for the population were recorded at each site. The MHWM was located by visually inspecting the top of the flow zone for evidence of previous (or current) water presence (*e.g.* marks on cliffs, abrupt vegetation changes, etc.). The elevations were recorded in 15 cm height classes (*i.e.* Class 1 = 0 to 15 cm, Class 2 = 16 to 30 cm, Class 3 = 31 to 45 cm etc., or Class -1 = -1 cm to -5 cm, Class -2 = -16 cm to -30 cm, etc.). Height above (or below) MHWM was determined using a sight level and a pole graduated in 15 cm height classes. In some cases visual estimation was used to determine elevation. Where elevation was above 20 height classes (3 m) or below -20 height classes, the number 99 (or -99) was recorded in the appropriate field. The minimum and maximum horizontal distances were determined using a hip chain or pacing for populations located on low slope ground, and visually estimated for high slope units. Where lateral distance was greater than 50 m either above or below the MHWM, the number 99 or -99 was recorded in the appropriate field.

Distance from MHWM to Current WSE: The approximate vertical distance from the MHWM to the current Water Surface Elevation was recorded for all populations. The elevation was measured using a graduated pole and a sight level. In instances where the water level was extremely low the elevation was estimated visually.

Location: The location of the site was described in general terms to a level that would allow a person looking at a map of the area to find the general vicinity of the site (*e.g.*, "Approximately $\frac{1}{2}$ mile upstream from the mouth of Pine Creek on the Oregon side of the river").

Habitat: A short description of the habitat was recorded (*e.g.*, "Dry, rocky slope"). This field was intended to give a general description of the habitat type. More specific habitat variables were recorded in other fields.

Physiography: The general physiography of the site was recorded. A 'wash' was considered to be a shallow ravine or creek with abundant alluvial deposits. A 'drainage' was considered to be a steep ravine or creek with few alluvial deposits.

Moisture: The moisture level of the soil at the time of survey was estimated for each population. Visual inspection of the soil's characteristics and the associated plant community was used to classify the site into one of five categories: Inundated, Saturated, Moist, Dry-Mesic, and Dry-Xeric.

Disturbance Type: A subjective assessment of each of the disturbance types influencing each site was recorded. The disturbance types assessed were: Alluvial (disturbance from sediment erosion and/or deposition resulting from sources other than the Snake River or its reservoirs); Flow zone (flooding disturbance in the zone between low and high water levels along the Snake River and reservoirs); Livestock (trampling or grazing by livestock); Mining (mining structures or activity); Fire (evidence or implication of past fire); Road Corridor (presence of road); Recreation (camping, boating, fishing, etc.); Trail (human foot traffic trail); Industrial (buildings, structures, commercial facilities); Residential (dwellings and associated buildings); Off-Road Vehicle (ORV) Use (all-terrain vehicles, motorcycles, 4x4's, etc.); Undisturbed; and Other (railroad tracks, slumping of soil, flood, etc.). Disturbance levels were recorded based on the following designations: 1 = None (no disturbance evident); 2 = Slight (some light disturbance on parts of the site); 3 = Moderate (a fair amount of disturbance over the majority of the site); 4 = Heavy (a substantial amount of disturbance over most of the site); and 5 = Extreme (an excessive amount of disturbance over nearly all of the site).

It is important to note that ratings were based on implied, as well as observed, disturbance levels. For example, although direct evidence of disturbance from fire was lacking in many populations, a rating of 2 (slight) or higher was often assigned based on the assumption that fires had periodically disturbed the site in the past, and would do so again in the future. This assumption was made based on general fire frequency patterns in the area, and the site's susceptibility to fire (*e.g.*, amount of vegetation, proximity to natural fire breaks, proximity to ignition sources). Similarly, recreational activities were considered to be a disturbing factor for many populations along the shoreline of the heavily used reservoirs, even though direct evidence of recreational disturbance may not have been currently visible within a particular population.

Surface Substrate: General surface substrate percentages were recorded based on visual estimation using the following categories: fine sediment, coarse w/fines, coarse w/o fines, and bedrock.

Total # of individuals in pop., What was counted?: The total number of plants in the population (within the boundaries of the unit) was either estimated or counted. The appropriate box 'Genets' or 'Ramets' was checked. Species such as *Phalaris arundinacea* (reed canarygrass) were usually counted by clumps, and the 'Genets' box was checked.

Phenology, Pop. age class: Appropriate percentages were recorded to describe the distribution of age and phenology of the population.

Gross pop. area, Net pop. area: The gross population area is the entire extent of the population, within the unit, including interstitial spaces not occupied by individuals. The net population area is the summed canopy coverages of the individual plants in the population (not including the interstitial spaces). Populations were defined at the point where no more individuals of the species occurred for a distance of 100 m.

Vigor: A subjective assessment of the vigor of the entire population was recorded using the following categories: excellent, good, fair, and poor. The rating was based on the professional judgement of the recorder, and included such factors as individual plant health, size of the population, and size of the individual plants.

Percent Cover, Cover Type, Plant Association: The percent cover for each life form category was recorded, including bare soil and rock. The cover type was recorded, by number, based on IPCo's vegetation classification codes. The plant association was derived based on the dominant species in the vicinity.

Noxious Plant Dominance Rating: The Noxious Plant Dominance Rating was recorded based on the following designations: 0 = Historically reported, no longer present; 1 = can be found by searching in and around other species (not obvious); 2 = can be seen only by moving through the site or by searching for it while standing in one place (a patch pattern observed while moving through the site rates a '2'); 3 = easily seen by standing in one place and glancing around but not an obvious dominant (in a mixed stand, several species may fall within this category); 4 = at least a co-dominant (shares dominance relative to cover or slightly subordinate); 5 = dominates the site (provides essentially total cover when viewed casually).

It should be noted that because this rating system relies partially on the observability of the individual plants, populations of the smaller, less visible species may be rated lower on this scale than those of the larger, more prominent species. For this reason, caution should be exercised when comparing noxious plant dominance ratings between species.

Apparent trend of population: A subjective assessment of the trend of the population was recorded (declining, stable, increasing, unknown). Because there was no evidence of trend at most sites, and these were primarily first-time visits, the trend was usually recorded as 'unknown'.

Abundant Species, Common Species, Rare Species: Associated species were recorded for the site.

Comments: Any additional relevant information was recorded in this section of the form. This includes information on other disturbance types associated with the population.

2.1.4 Statistical Analyses

Two types of statistical analyses were conducted to determine whether weed species found during the survey were associated with particular types and levels of disturbance, with particular reaches, or with relation to the MHWM (*i.e.*, above or below the MHWM). First, logistic regressions were used to determine whether the presence or absence of a weed species was

associated with the presence of a disturbance type, a reach, and/or the MHWM. Multiple logistic regression identifies the effect of change in each predictor variable on the probability of an event (presence or absence of a weed species, in this case) while holding the other predictors constant. Therefore, disturbance factors identified as significant have a significant effect across all reaches and all elevational categories. Second, to determine whether population size was affected by disturbance, proximity, or reach, ANCOVAs (General Linear Models) were conducted for each species on a reduced data set that included only sites at which the species of interest was located.

Several variable codings were common to both types of analyses. First, elevation was regarded as a categorical variable. Elevation class 7 (~1 m above MHWM) was chosen as an arbitrary reference line above which flow zone influence is minimal, and below which the effects of proximity to the water are likely to be felt. Each population was coded as "below the reference line" (maximum elevation < elevation class 7), "above the reference line" (minimum elevation > elevation class 7) or "crosses the reference line" (minimum elevation class 7, and maximum elevation > elevation class 7). Second, a particular disturbance type was regarded as "present" when it was recorded as moderate, heavy, or extreme, and "absent" when it was recorded as slight or none. All disturbance types that occurred at sites in which the species of interest was found were included in the analysis for that species when sample sizes were large enough (see below).

The large number of predictor variables (disturbance types), and the relatively few populations recorded for certain species created two limitations to these analyses. First, only main effects were tested in both types of tests, and not interactions between predictors. Second, as a rule of thumb, a sample size of seven positive observations per predictor variable is needed to obtain statistically robust results when conducting logistic regressions. Some species, therefore, had too few occurrences to conduct a logistic regression including all disturbance types. In these cases, if sample sizes were large enough (n => 17), and the distribution of predictors was sufficiently diverse, a reduced analysis, including only flow zone disturbance, reach, and elevational category was conducted (since these are the primary variables of interest).

Two logistic regressions were conducted. The first examined the effect of the occurrence of disturbance factors, in addition to proximity and reach, on the presence of the weed. A second logistic regression was then conducted to determine whether the level of disturbance (*i.e.*, none, slight, moderate, heavy, or extreme) was associated with the presence of the weed species. Because these tests involved multiple analyses with the same data set, a Bonferroni correction was used. Because the Bonferroni correction is a conservative correction, an alpha-level of 0.10 was used. For 20 tests at this alpha-level, p-values less than or equal to 0.005 were regarded as significant.

Next, using only the data from those sites where a particular species was found, multiple regressions were conducted to determine whether the size of a weed population varied with the presence or absence of disturbance types, reach, and/or proximity to the water, as well as with levels of disturbance. Net area was used as the most reliable estimate of population size. Net area was log transformed in order to fit the assumption of normal distribution of the residuals. No Bonferroni correction was needed for these analyses because data for each species were

independent of those of the other species. For these size tests, p-values less than 0.05 were regarded as significant.

Before these analyses were conducted, two "quality-control" analyses were performed. First, highly correlated variables (correlation coefficient >0.90) are not statistically distinguishable, and one should be removed from the analysis. Therefore, predictor variables (all disturbance types and elevation) were tested for autocorrelation. Second, a chi-square analysis was conducted to determine if the distribution of disturbance types was similar across all reaches. If a disturbance type is concentrated in one or two reaches, the effect of "reach" might overshadow the effect of the disturbance, or vice versa.

Statistical analyses were conducted on a total of 1,911 records, which included 6 records for population extensions which were discovered during the second field season. All analyses were conducted using the software package Statview [®] 5.0.

In addition to the above statistical analyses, a comparison of disturbance type frequencies was made for each of the species that had too few populations to allow for a full regression analysis. For each of these species, the distribution of disturbance types was compared to the average distribution of disturbance types for all species recorded. Where a particular disturbance was present in a species' populations at more than twice the average for all species, this fact is noted in the text. It is important to remember, however, that although a higher than average distribution of a particular disturbance may indicate a positive association between that species and the disturbance, the apparent association may be due to chance. This is particularly true for those species with only a few recorded populations.

2.2 RESULTS AND DISCUSSION

2.2.1 General Considerations

It should be noted that no botanical field survey methodology suitable for large study areas can guarantee that 100% of the target populations will be found. In the case of this project, it is likely that undiscovered weed populations exist in some of the units surveyed, even though the units were thoroughly searched. This is more likely to be the case with the less visible species (such as *Taeniatherum caput-medusae*), than with the larger, more visible species (such as *Onopordum acanthium* [Scotch thistle]).

Certain elements of the data collection protocol require the investigator to make subjective judgements about various factors. The disturbance type ratings, the noxious plant dominance rating, the vigor assessment, and the assessment of the apparent trend of the population are all subject to considerable individual interpretation. The investigators met on a regular basis during the field season to discuss these issues in an attempt to standardize data collection for the project. While this minimizes investigator bias, some differences in interpretation inevitably remain.

When interpreting the results of the logistic regressions, it is important to remember that no data were collected at sites lacking weed species. The analysis therefore assesses the difference

between the distribution of disturbances at sites where a particular weed species was found, and the distribution of disturbances at sites where all other weed species were found (rather than disturbances at sites where no weeds were found). If, for example, all weeds tend to be found in areas of road disturbance, this association will not be detected because areas without road disturbance would not tend to be sampled. Similarly, if most weed species are strongly associated with fire disturbance, a species that is moderately associated with fire will appear to lack this association in this comparison, but might not in comparison with sites where no weeds were found. A lack of association between a weed species and a particular disturbance type may therefore only mean that other weed species are more strongly associated with that disturbance, or that nearly all weed species are associated with that disturbance. Fortunately, in sampling such a wide variety of weed species, a large range of habitats was also sampled, providing an important measure of control, thereby strengthening the statistical results.

2.2.2 Prefield Review Results

Only one weed study specific to the project area was found. This was a five-day undesirable plant survey conducted by the Wallowa-Whitman National Forest in 1993 along the Snake River from Hells Canyon Dam downstream to Cache Creek (Burton 1993*a,b*). Although this inventory covered all of the Hells Canyon Downstream reach (and more), it was limited in intensity and in the amount of data collected. The surveyors used a jet boat, searching the shore and upland areas visually. Pedestrian surveys also occurred, primarily at recreation and camping sites. Data collection was limited to general distribution information mapped on Forest Service topographic maps. Although this Forest Service study alone does not provide sufficient detail for IPCo's relicensing requirements, general distribution data were helpful in planning and executing the IPCo noxious weed surveys along the Hells Canyon Downstream reach.

Other sources investigated during the prefield review were helpful in resolving taxonomic questions regarding the species of concern. Additional taxonomic keys and species guides were particularly helpful in developing the surveyors' search images for those species of concern not addressed by the primary taxonomic authority, *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1973).

2.2.3 Field Investigation Results

In total, 1,905 separate weed populations were recorded in the 405 units surveyed. Table 2 (on page 50) shows the total number of populations recorded for each weed species. Of the 405 surveyed units, 397 (or 98%) contained at least one population. Although the average number of populations per unit was 4.8 (standard deviation [abbreviated as s] =3.3), some units had as many as 16 populations. The average number of weed species per unit was 4.4 (s=2.9), ranging from 0 to 14. Table 3 (starting on page 52) lists the weed species of concern found within the project area, and the number of units in which they occur.

Breaking the study area into reaches, the Hells Canyon Downstream reach had an average of 2.4 different weed species present per unit (range 0-8; s=1.5); the Hells Canyon Reservoir reach had

an average of 5.7 per unit (range 0-13; s=3.5); the Oxbow Reservoir reach had the highest average, with 8.4 weed species per unit (range 2-14; s=2.6); the Brownlee Reservoir reach had an average of 4.4 species per unit (range 0-11; s=2.2); and the Weiser reach had an average of 6.7 species per unit (range 2-12; s=2.4).

The data also allow for an analysis of weed prevalence based on canopy coverage. Table 4 (beginning on page 54) ranks the study area weeds by their total net population areas. Net population area, rather than gross population area, was chosen for this analysis because it gives a truer estimate of the area actually covered by a particular species. *Taeniatherum caput-medusae* (medusahead wildrye) had the greatest average net area within the units surveyed (300 m²), followed by *Lepidium latifolium* (broadleaved pepperweed) at 200 m².

Appendix 1 provides lists (grouped by reach) of all plant species observed during the surveys. Appendix 2 contains all 1,905 Noxious Plant Observation Forms, under separate cover in five volumes. Appendix 3 contains USGS topographic quadrangle maps, under separate cover, showing the locations of all weed populations found.

2.2.4 Correlation of Predictors

All disturbance factors are significantly correlated with at least one other disturbance factor (Appendix 4). In particular, alluvial, flow zone, and recreation disturbance are all highly correlated with each other. In fact, flow zone disturbance is significantly correlated with all disturbance types except mining, other, and industry. However, many of these correlations are negative; disturbance from livestock, fire, roads, trails, and agriculture increase as flow zone disturbance decreases. In spite of this high degree of correlation, all disturbance types were used in the analysis, as the largest correlation coefficient was 0.409, making all predictors statistically separable.

This distribution of disturbance categories across reaches is highly significantly skewed ($\chi^2 = 1162.759$, df = 36, p < 0.0001). Agricultural disturbance is limited to the Brownlee, Downstream, and Weiser reaches, and is almost entirely concentrated in the Weiser reach (Appendix 5). Undescribed disturbance ('other') was concentrated on the Brownlee Reservoir reach. A substantial lack of road disturbance was present on the Downstream reach and Brownlee Reservoir, compared to expected frequencies. Because of this considerable skew, some care should be taken when interpreting significant associations with these reaches. An association with the Weiser reach, for instance, may indicate an association with agricultural disturbance that cannot be detected because there is virtually none on other reaches.

2.2.5 Statistical Findings Summary

Three species (*Amorpha fruticosa*, *Lepidium latifolium*, and *Phalaris arundinacea*) were significantly and positively associated with flow zone disturbance (Table 5 on page 56). Conversely, three others (*Cirsium vulgare, Cynoglossum officinale*, and *Taeniatherum caput-medusae*) were significantly and negatively associated with flow zone disturbance. Livestock disturbance was significantly correlated with *Taeniatherum caput-medusae* (positively) and

Tribulus terrestris (negatively). Three species were significantly associated with fire disturbance, one positively (*Hypericum perforatum*), and two negatively (*Convolvulus arvensis* and *Tribulus terrestris*). Road disturbance was significantly correlated with *Tribulus terrestris* (positively) and *Cynoglossum officinale* (negatively). Recreation disturbance was positively associated with two species (*Amorpha fruticosa* and *Tribulus terrestris*), and negatively associated with one (*Hypericum perforatum*). Finally, *Onopordum acanthium* was significantly and positively correlated with the 'other' disturbance type. Disturbance types also affect the population size of several weed species, either positively or negatively (Table 6 on page 58).

Many species are associated with particular elevational categories (Table 5). Species significantly associated with areas below (or crossing) the reference line include *Amorpha fruticosa*, *Hypericum perforatum, Lepidium latifolium, Phalaris arundinacea*, and *Tamarix* spp. Conversely, *Onopordum acanthium* and *Taeniatherum caput-medusae* are more likely to occur above the reference line, out of the flow zone area.

Species also varied in the probability with which they would occur across reaches. These associations are summarized in Table 5 and in the following species accounts. Maps showing the locations of all recorded noxious weed locations are contained in Figure 3 through Figure 21 beginning on page 71. Photos of selected sites are contained in Figure 22 through Figure 27 beginning on page 90.

2.2.6 Species Analysis

Onopordum acanthium (Scotch thistle): (Map: Figure 3 on page 71, Photo: Figure 26 on page 92) This species was the most abundant weed found based on total number of populations (238), and units occupied (226) (Table 2 and Table 3). Most often the species was found growing in the drier, upland habitats, but occasionally plants, especially seedlings, extended into the riparian zones. Populations were often extensive, and continued up and out of the 50 m study corridor.

Elevational category was a significant predictor for the presence of this species ($\chi^2 = 30.383$, df = 2, p < 0.0001), with populations of *O. acanthium* significantly more likely to be located in areas entirely above or crossing the reference line than below it (Appendix 6). Populations were most likely to be present on the Brownlee reach, although differences between all reaches were not significant (Appendix 6). The presence of 'other' disturbance was also significantly associated with *Onopordum* ($\chi^2 = 10.368$, p = 0.0013).

The size of *Onopordum acanthium* populations is significantly affected by a variety of factors. First, population size varies among reaches (F = 2.669, df = 4, p = 0.0332) and among elevational categories (F = 15.059, df = 2, p < 0.0001). Specifically, populations are largest on the Weiser reach, though only significantly larger than those on the Downstream reach (Table 6, Appendix 6). Populations that cross the reference line are significantly larger than those that occur entirely above or below that point. Population size increases significantly as disturbance increases from the flow zone (F = 4.072, df = 1, p = 0.0448) and mining (F = 8.958, df = 1, p = 0.0031). There is a trend for population size to increase with several less common disturbance types, although these correlations are not significant. Amorpha fruticosa (false indigo): (Map: Figure 4 on page 72, Photo: Figure 23 on page 90) Amorpha fruticosa was the second most common species recorded based on both total populations (219), and on the number of units it was present in (195) (Table 2 and Table 3). Of note, however, is the relative scarcity of the species on the Hells Canyon Downstream reach and the Weiser reach. It occurs in only 8% of the units in the Downstream reach, and 36% of the units on the Weiser reach. By contrast, on the three reservoir reaches, the species is found in over 65% of the units. A. fruticosa usually was found at, or very near, the MHWM.

This species appears to be strongly associated with the flow zone. In particular, *Amorpha fruticosa* was significantly associated with the presence of flow zone disturbance ($\chi^2 = 17.734$, p < 0.0001), and with increasing levels of flow zone disturbance, across all reaches ($\chi^2 = 28.631$, p < 0.0001). This species was also significantly associated with elevational category ($\chi^2 = 140.453$, df = 2, p < 0.0001). Populations were significantly associated with sites located entirely below the reference line (below vs. above, $\chi^2 = 31.550$, p < 0.0001; below vs. cross, $\chi^2 = 40.427$, p < 0.0001). In addition, the presence of this species was significantly associated with the presence and level of recreational disturbance, as well as with increasing levels of fire disturbance (Appendix 6).

Population size of this species was also affected by a variety of factors (Appendix 6). The presence of agricultural disturbance had a significant, positive effect on population size (F = 7.911, df = 1, p = 0.0054), as did the presence of livestock disturbance (F = 4.072, df = 1, p = 0.0449). Population size also increased as the agricultural disturbance increased (Appendix 6). Increasing levels of trail and flow zone disturbance also had a slight, but significant positive effect on population size (Appendix 6).

<u>Cynoglossum officinale (common houndstounge)</u>: (Map: Figure 5 on page 73) Cynoglossum officinale was found in 156 units throughout all reaches, except the Weiser reach (Table 3). A total of 171 populations were recorded, making this species the third highest in total number of populations (Table 2). The plants usually were found well above the MHWM in disturbed upland habitat, however, occasional concentrations of plants were found in drier riparian areas.

Cynoglossum officinale appears to be associated with areas outside the flow zone. It is strongly and negatively associated with the presence ($\chi^2 = 28.750$, p < 0.0001) and the level ($\chi^2 = 29.122$, p < 0.0001) of flow zone disturbance (Appendix 6). Increasing levels of road disturbance are also negatively correlated with the presence of this species ($\chi^2 = 8.181$, p = 0.0042). The weed's absence from the Weiser reach is responsible for the significant effect of reach on its distribution ($\chi^2 = 41.783$, df = 4, p < 0.0001).

Several factors affect the size of *C. officinale* populations. Populations crossing the reference line are significantly larger than populations entirely above or below it (Appendix 6). Populations on the Downstream reach are significantly smaller than those on the Oxbow and Hells Canyon Reservoir reaches (Appendix 6). Larger populations are found in areas of heavier agricultural disturbance (F = 4.762, df = 1, p = 0.0306), heavier fire disturbance (F = 5.514, df = 1, p = 0.0201), and heavier ORV disturbance (F = 7.409, df = 1, p = 0.0072).

Hypericum perforatum (St. John's wort): (Map: Figure 6 on page 74) *Hypericum perforatum* was recorded from 145 units (151 populations) (Table 2 and Table 3). The Hells Canyon Downstream reach showed the greatest abundance, with the species occurring in 110 units (87%). The Hells Canyon Reservoir and Oxbow Reservoir reaches showed moderate infestations, with occurrences in 21 (39%) and 12 (46%) units respectively. The Brownlee Reservoir reach showed comparatively low abundances for *H. perforatum*, with occurrences in only 2 (1%) units. Although the populations occasionally extended down into the upper portions of the flow zone, the majority of the plants were found in upland sites.

The presence of *H. perforatum* was significantly associated with both elevational category ($\chi^2 = 40.940$, df = 2, p < 0.0001) and reach ($\chi^2 = 262.982$, df = 4, p < 0.0001). This species is most likely to be found on the Downstream reach (Appendix 6), and was not found at all on the Weiser reach. It is significantly associated with sites crossing the reference line (Appendix 6). This weed is also significantly associated with increasing levels of fire disturbance ($\chi^2 = 10.126$, p = 0.0015). Finally, it is associated with lower levels of recreational disturbance ($\chi^2 = 8.851$, p = 0.0029).

The size of *H. perforatum* populations was affected by several factors. It varied significantly between reaches (F = 13.327, df = 3, p < 0.0001) and between elevational classes (F = 3.697, df = 2, p = 0.0273). Populations that crossed the reference line were significantly larger than populations entirely below it (p = 0.0033), and marginally larger than populations entirely above it. Populations on the Downstream reach were significantly larger than populations on the Hells Canyon Reservoir and Brownlee Reservoir reaches, but not significantly larger than populations on the Oxbow Reservoir reach (Appendix 6). No disturbance factors affected population size.

Lepidium latifolium (broadleaved pepperweed): (Map: Figure 7 on page 75) *Lepidium latifolium* was found in dense patches and scattered populations throughout all reaches except the Hells Canyon Downstream reach. A total of 149 populations in 145 units were recorded (Table 2, Table 3). The plants are usually concentrated in the riparian areas, but often extend up onto the dry slopes.

The distribution of *Lepidium latifolium* is affected by disturbance type, elevation, and reach; and appears to be associated with the flow zone. This species is significantly associated with the presence of flow zone disturbance ($\chi^2 = 24.848$, p =< 0.0001), and with the level of flow zone disturbance. In addition, populations are significantly associated with sites crossing the reference line (Appendix 6).

Only reach (F = 13.431, df = 3, p < 0.0001) and elevational category (F = 10.229, df = 2, p < 0.0001) significantly affect population size in this weed. Populations that cross the reference line, and those on the Weiser reach are the largest (Appendix 6).

<u>Convolvulus arvensis (field bindweed):</u> (Map: Figure 8 on page 76) Convolvulus arvensis was found in 128 populations scattered among 113 units throughout all reaches (Table 2 and Table 3). The plants were found growing both well above and well below the MHWM (sometimes within the same population).

Reach has a significant effect on the presence of this species ($\chi^2 = 24.317$, df = 4, p<0.0001). *Convolvulus arvensis* is most likely to be present at sites on the Downstream reach, but not all differences between reaches are significant (Appendix 6). There is a significant, negative relationship between this species' presence and increasing levels of disturbance from fire ($\chi^2 = 9.637$, p = 0.0019).

Although proximity to the reference line is not a significant predictor of the presence of *C*. *arvensis*, populations of this species that cross it are significantly larger than populations that occur entirely below it (Appendix 6), possibly due to this species' tolerance of a broad range of habitat characteristics. In addition, populations of this species tend to increase in size with increasing disturbance from trails (F = 7.012, p = 0.0093).

Taeniatherum caput-medusae (medusahead wildrye): (Map: Figure 9 on page 77) *Taeniatherum caput-medusae* was found in 119 units (totaling 119 populations) (Table 2 and Table 3). Many of the populations were extensive, containing thousands of individuals. Because of this, the average total net area for this species was greater than for any other species. The populations were most often found on dry, upland slopes, but often extended down to the MHWM.

Taeniatherum caput-medusae appears to be strongly associated with areas outside the flow zone. Populations of this species are significantly more likely to be found above or crossing the reference line than below it (Appendix 6). The species is negatively associated with the presence of flow zone disturbance ($\chi^2 = 12.845$, p = 0.0003), and the probability that it will occur decreases with increasing levels of flow zone disturbance ($\chi^2 = 20.594$, p < 0.0001). This species is also significantly associated with livestock disturbance ($\chi^2 = 19.057$, p < 0.0001), and with increasing levels of livestock disturbance ($\chi^2 = 24.824$, p < 0.0001). Finally, although distribution of this weed did not vary significantly among the reaches on which it was found, no populations were located on the Downstream reach (Appendix 6). With the large number of populations of this species that were located elsewhere, this absence may be significant.

Elevational category had a significant effect on population size of this species (F = 9.336, df = 1, p = 0.0002). Populations that crossed the reference line were significantly larger than those that occurred entirely above that point (Appendix 6). In addition, of the reaches on which this species was found, populations were largest on the Oxbow and Brownlee reaches. Populations significantly decreased in size as flow zone disturbance increased (F = 4.255, df = 1, p = 0.0417), and as the level of 'other' disturbance increased (F = 4.561, df = 1, p = 0.0351).

Phalaris arundinacea (reed canarygrass): (Map: Figure 10 on page 78, Photo: Figure 27 on page 92) *Phalaris arundinacea* was found in 105 total units on all five reaches (although the Hells Canyon Downstream and Oxbow Reservoir reaches together contained only four populations) (Table 2 and Table 3). The species was usually found below the MHWM, but occasionally extended above the MHWM up into the riparian vegetation, especially along side creeks.

Phalaris arundinacea was significantly associated with elevational class ($\chi^2 = 28.804$, df = 2, p < 0.0001) and with the presence and level of flow zone disturbance (presence: $\chi^2 = 35.825$, p <

0.0001; level: $\chi^2 = 26.106$, p<0.0001). This species was most likely to be found below the reference line (Appendix 6), indicating a strong association with the flow zone. It is also significantly associated with reach ($\chi^2 = 31.645$, df = 4, p < 0.0001), and is most likely to be found on the Weiser reach (Appendix 6).

Populations of this species were largest on the Weiser reach (Appendix 6), and increased with the presence, and increasing levels, of agricultural disturbance. Population size decreased with the presence, and increasing levels, of 'other' disturbance. Although flow zone is an important predictor of the presence of this weed, it did not have an effect on population size.

<u>Tribulus terrestris (puncturevine)</u>: (Map: Figure 11 on page 79) *Tribulus terrestris* was found in 88 total units, along all five reaches (although few populations were found on the Hells Canyon Downstream and Weiser reaches) (Table 2 and Table 3). The plants were often found along roadsides and other heavily disturbed areas. Some populations were also found growing in the exposed flow zone areas.

Several factors were significantly associated with the presence of this weed. *Tribulus terrestris* is significantly associated with the presence of road ($\chi^2 = 15.625$, p <0.0001), and recreational disturbance ($\chi^2 = 14.545$, p = 0.0001), as well as increasing levels of those disturbance types (Appendix 6). However, the presence of livestock disturbance ($\chi^2 = 9.654$, p=0.0019), and increasing levels of fire disturbance are negatively associated with the presence of this weed ($\chi^2 = 10.152$, p = 0.0014). Neither reach nor elevational category significantly affected the probability of this species occurring.

Population size increased significantly with increasing levels of fire disturbance (F = 4.760, df = 1, p = 0.0321), but decreased with the presence of alluvial disturbance (F = 4.520, df = 1, p = 0.0367). In addition, populations crossing the reference line were larger than populations in the other two elevational categories (Appendix 6) No other factors were associated with an increase in population size for this species.

<u>Conium maculatum (poison hemlock)</u>: (Map: Figure 12 on page 80, Photo: Figure 24 on page 91) Conium maculatum was found in a total of 86 units along all reaches (although only one population was located on the Hells Canyon Downstream reach) (Table 2 and Table 3). The species was most often found growing in riparian habitats, but also extended up dry slopes.

No disturbance factors or elevational categories were significantly associated with the presence of *Conium maculatum*. However, this weed was significantly associated with reach ($\chi^2 = 38.651$, df = 4, p < 0.0001). In particular, this species was more likely to be found on the Weiser, Oxbow, and Brownlee reaches than on the Hells Canyon Reservoir or Downstream reaches (Appendix 6).

Several factors affected the size of *C. maculatum* populations. Populations of this species varied significantly between reaches (F = 6.288, df = 4, p = 0.0002) and elevational classes (F = 3.808, df = 2, p = 0.0267). Populations that crossed the reference line were significantly larger than populations located either entirely below it (p = 0.0006) or entirely above it (p = 0.0228). Populations on the Weiser reach were significantly larger than those on the Oxbow and Brownlee Reservoir reaches. Since only one population was found on the Downstream reach, comparisons

with this reach are not valid. In addition, the presence of road disturbance is associated with larger population sizes (F = 4.499, df = 1, p = 0.0373) (Appendix 6).

<u>Cirsium vulgare</u> (bull thistle): (Map: Figure 13 on page 81) Eighty-one populations of *C. vulgare* were found in 72 units scattered throughout all reaches (Table 2 and Table 3). In general, most populations contained few individuals and, consequently, the total net area for the species is low (average of $0.8 \text{ m}^2/\text{unit}$). The plants were usually found well above the MHWM on the dry upland slopes.

Several factors were associated with the presence of *Cirsium vulgare*. The distribution of populations between reaches varied significantly ($\chi^2 = 25.710$, df = 4, p<0.0001), with populations most likely to be present on the Downstream reach and least likely to be present on Brownlee Reservoir, although not all differences between reaches were significant (Appendix 6). This species was also strongly and negatively associated with the presence and level of flow zone disturbance, in comparison with other weed species (presence: $\chi^2 = 20.977$, p < 0.001; level: $\chi^2 = 19.648$, p <0.0001).

Population size in this species varied significantly between reaches (F = 3.537, df = 4, p = 0.0113) and elevational categories (F = 3.148, df = 2, p = 0.0496). Populations on the Oxbow Reservoir were largest, but differences between reaches were not significant (Appendix 6). In addition, populations that crossed the reference line were the largest, although all comparisons were not significant (Appendix 6).

<u>Cardaria draba (whitetop)</u>: (Map: Figure 14 on page 82) Cardaria draba was found in 51 units on all reaches except the Hells Canyon Reservoir reach (Table 2 and Table 3). Several of the populations are extensive and contain thousands of individuals. The species is associated primarily with upland habitats. It should be noted that *C. draba* was well past its flowering period by the time of the late summer survey, and detection was difficult.

A reduced analysis (looking only at flow zone disturbance, reach, and elevational category) was conducted on *C. draba* because there were not enough data points to analyze all disturbance factors noted at sites where this species was found. The presence of whitetop was not significantly associated with either elevational category, or the presence or level of flow zone disturbance (Appendix 6). However, this species was significantly associated with reach. Whitetop was most likely to be found on the Brownlee Reservoir.

Population size was significantly affected by elevational category (F = 7.943, df = 2, p = 0.0010). Populations found below the reference line were significantly smaller than populations that crossed it (p = 0.0019). No other factors significantly affected population size (Appendix 6).

A greater proportion of *C. draba* populations than average had moderate or greater agricultural, livestock, and residential disturbance (Appendix 7). Although these three disturbance factors could not be statistically tested due to the small sample size, this distribution suggests that there may be an association between these disturbances and this weed species.

<u>Cirsium arvense</u> (Canada thistle): (Map: Figure 15 on page 83) A total of 47 units contained *C. arvense* populations, with the majority (43 units) occurring on the Brownlee Reservoir and Weiser reaches (Table 2 and Table 3). Most often the plants were found growing in upland habitats.

Because of the relatively small sample size, a reduced analysis was conducted on *C. arvense*. Neither relation to the reference line nor the presence or level of flow zone disturbance was significantly associated with this weed (Appendix 6). However, the distribution of populations of this species varied significantly between reaches ($\chi^2 = 68.636$, df = 4, p < 0.0001). In particular, populations of Canada thistle were significantly more likely to be found on the Weiser reach than on any other reach (Appendix 6).

Population size in this species was not associated with reach, elevation, or flow zone disturbance (Appendix 6).

Agricultural and 'other' disturbance types were recorded across all *Cirsium arvense* sites at more than twice their expected averages (Appendix 7). While these associations could not be tested due to the small sample size, this may indicate that the presence of this species is associated with these two disturbance factors.

Tamarix sp. (tamarisk): (Map: Figure 16 on page 84) Forty-five populations of *Tamarix* sp. were found in 45 units, most at the upper end of Brownlee Reservoir or on the Weiser reach (Table 2 and Table 3). The plants were usually found growing in riparian habitats at the MHWM or below.

A reduced analysis was conducted on *Tamarix* sp. due to the relatively low number of populations found. The species is significantly associated with both reach ($\chi^2 = 49.794$, df = 4, p<0.0001), and relation to the reference line ($\chi^2 = 25.710$, df = 2, p<0.0001) (Appendix 6). It is also significantly more likely to be found below the reference line than in the other elevational categories (Appendix 6). This combination of factors suggests that this species is associated with the flow zone. *Tamarix* sp. was only found on the Brownlee and Weiser reaches.

No factors were significantly associated with population size in this species (Appendix 6).

Both flow zone and ORV disturbance occurred in *Tamarix* sp. populations at more than twice the averages observed across all recorded populations (Appendix 7). Although these disturbance factors could not be tested due to the small sample size, this distribution suggests that there may be an association between these two disturbance types and this weed species.

Ambrosia artemisiifolia (annual ragweed): (Map: Figure 16 on page 84) The Hells Canyon Reservoir and Oxbow Reservoir reaches contained the majority of the *Ambrosia artemisiifolia* populations (31 out of 33 total) (Table 2 and Table 3). The plants were found growing in a variety of habitats. It should be noted that *A. artemisiifolia* blooms very late in the summer, making detection during the spring survey difficult.

A reduced analysis was conducted on *A. artemisiifolia* because of the relatively small sample size. This species did not have a significant association with elevational category or presence of flow zone disturbance. However, the distribution of populations between reaches varied significantly ($\chi^2 = 65.287$, df = 4, p < 0.0001). Populations were more likely to be present on the Oxbow Reservoir reach than on the other reaches. This difference was significant between the Oxbow Reservoir reach and the Brownlee Reservoir and Downstream reaches, but not between Oxbow and the Hells Canyon Reservoir reaches (Appendix 6). Populations were also significantly more likely to be present on Hells Canyon Reservoir than on Brownlee Reservoir. The Weiser reach had no populations of this species.

Reach was also the only factor to affect the size of *A. artemisiifolia* populations (F = 7.292, df = 3, p = 0.0011). Significantly larger populations of this weed were found on Oxbow Reservoir than were found on Hells Canyon Reservoir or the Downstream reach (Appendix 6).

Residential disturbance was present in the *A. artemisiifolia* populations much more often than the average across all species (Appendix 7). Because of the small sample size, however, this possible correlation could not be checked statistically.

Elaeagnus angustifolia (Russian olive): (Map: Figure 16 on page 84) Twenty-four populations of *E. angustifolia* were recorded across all reaches except the Hells Canyon Downstream reach (Table 2 and Table 3). Mature trees were typically found just above the MHWM, while seedlings tended to grow in the flow zone below the MHWM.

The number of populations of Russian olive populations located, allowed for only a reduced analysis. Neither flow zone disturbance nor elevational category had a significant effect on the presence of this species (Appendix 6). However, the probability of finding *Elaeagnus angustifolia* varied significantly among reaches ($\chi^2 = 34.931$, df = 4, p < 0.0001). This species was most likely to occur on the Weiser reach, and did not occur at all on the Downstream reach.

None of the three factors tested (reach, elevational category, or flow zone disturbance) significantly affected population size in this species (Appendix 6).

The *E. angustifolia* populations showed a high proportion (relative to the average) of both agricultural and residential disturbance (Appendix 7). While these suggested associations could not be tested, due to the small sample size, they may indicate a correlation between *E. angustifolia* and these two disturbance types.

Potentilla recta (erect cinquefoil): (Map: Figure 17 on page 85) *Potentilla recta* was found in 18 units, all on the Hells Canyon Downstream reach (Table 2 and Table 3). The plant was located primarily in upland habitats.

Although 21 populations of *P. recta* were found, the distribution of predictor factors did not allow for a reduced logistic analysis. All populations but one were located entirely above the reference line. Only one site had slight flow zone disturbance; the remaining sites had none. This combination of factors indicates that this weed may be associated with areas outside the flow zone.

Trail disturbance was recorded in the *P. recta* populations much more often than the average across all species (Appendix 7). Because of the small sample size, however, this possible correlation could not be checked statistically.

Linaria dalmatica (Dalmatian toadflax): (Map: Figure 17 on page 85, Photo: Figure 25 on page 91) Nineteen populations of *L. dalmatica* were recorded from 19 units (Table 2 and Table 3). The populations were primarily found in upland areas.

A reduced analysis was conducted on the 19 populations of this species. None of the three factors tested (reach, elevation, or flow zone) had a significant effect on the presence of *L. dalmatica* (Appendix 6). However, the species was not found on the Weiser or Oxbow reaches. No factors had a significant effect on population size for *L. dalmatica* (Appendix 6).

Although the analysis could not include all disturbance factors, a high proportion of sites, compared to all other species, had road, trail, ORV, and 'other' disturbance (Appendix 7).

<u>Chondrilla juncea (rush skeletonweed):</u> (Map: Figure 17 on page 85) Six populations of *C. juncea* were found on the Hells Canyon Downstream reach, and eleven populations were found on the Brownlee Reservoir reach (Table 2 and Table 3). Most of the populations were small (none contained more than 50 estimated plants), and all were in upland habitats.

A reduced analysis was conducted on the 17 populations of rush skeleton-weed found. Flow zone disturbance was not significantly associated with this weed, however the species showed significant association with reach ($\chi^2 = 23.269$, p =0.0001) (Appendix 6).

No factors except elevational category affected population size in *C. juncea*. Populations that crossed the reference line were significantly larger (p = 0.0312) than populations restricted to the area above the reference line (Appendix 6).

Although a complete analysis was not possible due to the small sample size, sites where this species were found show more than twice the average rate of livestock disturbance (Appendix 7), indicating that this disturbance type may be associated with this species.

Kochia scoparia (kochia): (Map: Figure 18 on page 86) Most of the 14 populations (contained in 15 units) of *K. scoparia* are located at the upper end of Brownlee Reservoir and the Weiser reach (Table 2 and Table 3). Most of the sites are in upland habitats.

Logistic regression was not conducted on this species due to the sample size of 14 populations. None of these populations were found on the Downstream reach or Hells Canyon Reservoir reach, and none were located entirely below the reference line. A very high proportion, compared with the average, occurred in locations with heavy or extreme 'other' disturbance, suggesting that there may be an association between this species and the disturbance (Appendix 7). This is especially true if the several instances all result from the same cause. In addition, a high proportion of sites where this species was found also had fire disturbance.

Lythrum salicaria (purple loosestrife): (Map: Figure 18 on page 86) *Lythrum salicaria* was found in sparsely scattered locations in 13 units, along all reaches except the Hells Canyon

Downstream reach. It was usually found growing below the MHWM, often near the shoreline. The plants were often emergent.

No statistical analyses were conducted on this species because only 13 populations were located. All but one of the populations were located entirely below the reference line; the remaining population crossed it. In addition, 92 percent of the sites at which this species was found had moderate or heavy flow zone disturbance (Appendix 7). This suite of traits suggests that this weed is associated with the flow zone.

<u>Cuscuta</u> sp. (dodder): (Map: Figure 18 on page 86) Ten populations of *Cuscuta* sp. were found in 10 units (Table 2 and Table 3). The plants were growing along roadsides, and down into the flow zone.

Due to the small sample size, statistical analyses were not conducted on *Cuscuta* sp. No populations were located on the Oxbow Reservoir or Downstream reach. A relatively high proportion of sites where *Cuscuta* sp. was found (60%) have moderate or greater road corridor disturbance. While this is twice the average proportion (Appendix 7), and may indicate an association with this type of disturbance, the high proportion may also be due to the small sample size.

<u>Salvia aethiopis (Mediterranean sage):</u> (Map: Figure 19 on page 87) Ten populations of *S. aethiopis* were found on the Oxbow and Hells Canyon Reservoirs (Table 2 and Table 3). The populations were usually found in upland habitats. Only one occurred entirely below the reference line; the other populations either crossed, or were located above, the reference line. None of the sites had flow zone disturbance. These factors suggest that the species may be associated with areas outside the flow zone.

Equisetum arvense (common horsetail): (Map: Figure 19 on page 87) Equisetum arvense was only found in 8 units (Table 3). No statistical analyses were conducted for the nine populations that were located (Table 2). All populations were on the Downstream reach, and all but one were found below the reference line (the one remaining population extended from below the MHWM to 1.4 m above the MHWM.) All populations occupied sites with heavy flow zone disturbance, and a greater proportion than average (across all species) occupied areas with heavy alluvial disturbance (Appendix 7). This suite of factors suggests that this species may be associated with the flow zone. In addition, a higher proportion of *E. arvense* populations had trail disturbance (relative to the average across all species) (Appendix 7).

Agropyron repens (quackgrass): (Map: Figure 19 on page 87, Photo: Figure 22 on page 90) A total of seven populations of *A. repens* were found within the study area, on all of the reaches except for the Weiser reach (Table 2 and Table 3). The populations are located in a variety of habitats.

Due to the small sample size, no statistical analyses were performed for this species. It was found in all elevational categories. A higher than average proportion of sites where it was found had moderate or greater fire, trail, residential, ORV, and 'other' disturbance (Appendix 7). <u>Cyperus esculentus (yellow nut sedge)</u>: (Map: Figure 20 on page 88) No statistical analyses were performed on the seven populations of *Cyperus esculentus* that were found. All populations but one were found on the Downstream reach, and all were below the reference line. In addition, all sites where this species was found had heavy flow zone disturbance. This combination of factors suggests that *C. esculentus* may be associated with proximity to the flow zone, and/or flow zone disturbance itself. Finally, a relatively high proportion of sites where this species was found, in comparison with other species, had alluvial disturbance (Appendix 7).

<u>Centaurea diffusa (diffuse knapweed):</u> (Map: Figure 20 on page 88) Only six populations of *C. diffusa* were located, so no statistical analyses were performed. All six populations were located on the Hells Canyon Reservoir and none were located below the reference line. In addition, all populations were found in areas with moderate, heavy or extreme road disturbance. This is a greater proportion of populations than the average with this type of disturbance, suggesting that there may be an association between road corridors and the presence of this weed (Appendix 7).

<u>Aegilops cylindrica (jointed goat grass):</u> (Map: Figure 20 on page 88) No statistical analyses were conducted on *A. cylindrica*, as it was found at only three sites. However, all three sites had heavy to extreme road and recreational disturbance. This proportion (100%) is well above the average proportion of sites with road and recreational disturbance (Appendix 7), indicating that there may be an association between these disturbances and the presence of this species. With such a small number of populations, however, this association could be due to chance. All populations were located on the Oxbow and Hells Canyon Reservoir reaches, entirely above the reference line.

Euphorbia esula (leafy spurge): (Map: Figure 21 on page 89) Three populations of *E. esula* were located on the Brownlee Reservoir and Weiser reaches. No statistical conclusions can be made from this small sample, but all populations were located in areas of heavy or extreme flow zone disturbance, and alluvial, fire, and agriculture disturbances were present in a higher proportion of *E. esula* sites than the average for all species.

<u>Crupina vulgaris (common crupina):</u> (Map: Figure 21 on page 89) Crupina vulgaris was found in one location, on the Downstream reach. The population was entirely above the reference line and was in an area of moderate livestock damage. No inferences can be drawn.

Daucus carota (wild carrot): (Map: Figure 21 on page 89) No statistical inferences can be drawn from the single population of *D. carota*, found on the Brownlee Reservoir. It was located above the reference line in an area of moderate livestock disturbance.

Polygonum cuspidatum (Japanese knotweed): (Map: Figure 21 on page 89) One population of *P. cuspidatum* was found on the Hells Canyon Reservoir, crossing the elevational reference line, in an area of heavy recreational disturbance. No statistical inferences can be drawn.

2.2.7 Interpretation of Results

An overview of the data shows that noxious weed species (and other invasive plants), as a group, are common and abundant throughout the entire study area. Weed species were absent from only

2% of the 405 units surveyed, and most units contained multiple populations. There are likely a number of factors which contribute to this concentration of weeds near the river and reservoirs.

First, a larger variety of upland and wetland habitats exist along rivers and reservoirs compared to the general surrounding landscape. All of the units within the study area contained both upland and riparian habitats, usually spanning the moisture range from inundated to dry-mesic or dryxeric. This range of habitats provides opportunities for the occurrence of a wide variety of plant species. This range can be seen in many of the units which contained strictly upland species such as *Taeniatherum caput-medusae*, while at the same time containing wetland associates such as *Lythrum salicaria*.

Another contributing factor would be the higher general levels of disturbance, from a number of different factors, along rivers and reservoirs. These areas typically receive greater levels of disturbance from recreation, flooding, animal use, road building, and a host of other activities and natural phenomena, than do the surrounding upland areas. Although disturbance levels within the study area were not quantified with respect to other nearby areas, it is reasonable to assume that disturbance levels are generally higher along the river and reservoirs. This would account, perhaps in large part, for the high weed concentrations recorded in the study area. However, it is difficult to attribute the high weed concentrations to individual disturbance factors, because most of the factors are interrelated. For example, the presence of a road at a site may increase recreation access, which in turn may increase fire frequency, which may affect grazing pressure in the area.

Weed concentrations within the study area are also likely high due to the effect that the river corridor can have on the transport and dispersal of plant seeds and parts. Weed seeds and living plant material are likely to be transported along the river corridor quicker, and in greater concentrations, than in surrounding upland areas. Weed material can float downstream, be carried by animals using the river as a migration corridor, or be transported along the river corridor in a number of other ways. These all result in higher concentrations of weed populations within river corridors, than the surrounding uplands.

2.2.8 Summary of Findings

Table 7 (on page 60) presents a brief summary of the findings of this study and is designed to complement the more extensive written text and supporting tables. The results of this study indicate that weed distribution within the Hells Canyon Complex study area is influenced by a number of interrelated factors. For some species, it is possible to separate out particular associative factors (such as the presence of flow zone disturbance or proximity to the MHWM). These results are useful in the development of resource management strategies which limit the establishment and spread of weed populations, and aid in the maintenance of native plant communities.

PART 3: RARE PLANTS

3.1 METHODS

3.1.1 Prefield Review

In consultation with agency personnel, IPCo developed a list of special status plant species to be considered during the study. Rare species were included on this list if they were known to be associated with the river or reservoirs, possibly impacted by IPCo's operations in the area, or of special cultural significance.

Once the initial list was compiled, it was divided into two groups. The first group, consisting of eight species, was the focus of the special status plant investigation. That is, the survey methods and timing were constructed with the specific habitats and identification periods of these species in mind. The focus species were chosen based on their classification by the Oregon Natural Heritage Program and the Idaho Conservation Data Center. The species which were listed by these two organizations as being the most highly imperiled, were placed on the focus list for this investigation. The second group, also consisting of eight species, was defined as incidental to the planning of the study. Data were recorded regarding populations of these species, if encountered, but their habitats and identification periods were not specifically targeted. These species were the remaining species left once the focus species were chosen. They represent those rare species that are considered to be less imperiled than the focus group. Table 8 (on page 61) gives the complete list of plant species of concern for the purposes of this investigation.

Prior to the field surveys, a review of available literature and other sources was conducted to gain information on special status plant species potentially located within the project area. Taxonomic keys (Hitchcock *et al.* 1955-1969, Hitchcock and Cronquist 1973, Hickman 1993, Brooks *et al.* 1991, Meinke [No date]) and plant lists (US Forest Service 1994, Eagle Cap Consulting Inc. 1998) were collected and reviewed to provide distribution, identification, and habitat information regarding the species of concern.

3.1.2 Field Investigation

Summer field surveys of the project area began on August 4, 1998. Crews started working on Oxbow Reservoir and lower Brownlee Reservoir, moving down to Hells Canyon Reservoir by the later half of August. Two raft trips took place August 31 through September 14 to survey portions of the Hells Canyon Downstream reach. Finally, from September 18 through 28, crews inventoried sections on upper Brownlee Reservoir and the Weiser reach. Of the total 405 units within the study area, 266 (65.7%) were surveyed for special status plants during the late summer survey.

The spring field surveys took place from April 19 through June 4, 1999. Crews began work on upper Brownlee Reservoir and the Weiser reach, progressing north to lower Brownlee, Oxbow

and Hells Canyon Reservoirs by the beginning of June. At the same time, two raft trips were conducted between May 3 and May 23 to survey the Downstream reach.

Units were accessed either by foot or by boat. Once in the unit, the surveyor(s) walked the entire length, searching all habitats present. Special care was taken to intensively search all high-probability special status plant habitats encountered (*e.g.* riparian zones, wet meadows, vernal seeps, rock outcrops and cliffs, etc.). If any rare plant species of concern were found, the surveyor(s) collected extensive data on the population using the Rare Plant Observation Form (see Section 3.1.3 below).

In addition to the 405 units thoroughly searched, the field crews also surveyed selected highprobability habitats between the units. These supplementary surveys occurred when the investigators saw habitats between the units which appeared to contain high potential for the occurrence of the target species. Unlike the areas within the survey units, only the high probability habitats were searched between units. No attempt was made to completely survey the areas between the units. These habitats were searched during the course of the spring-season surveys. The final days of the spring survey were devoted exclusively to surveying these habitats between the units.

3.1.3 Data Collection

The Rare Plant Observation Form (Figure 28 on page 93) was used for all data collection in the field. A description of the data collected, and the methods used in obtaining these data, are presented below.

Scientific Name: The authority used for most species names was *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1973). Updated taxonomy was referenced in *Sensitive Plants of the Malheur, Ochoco, Umatilla, and Wallowa-Whitman National Forests* (Brooks *et al.* 1991). (Species codes, used occasionally for shorthand notation on maps, etc., were based on IPCo's Species Codes book dated March 6, 1998).

Site Number: Each site was numbered with either an eleven or twelve character code (*e.g.*, LLM05059901 or RKM040898102). The first three characters are the initials of the botanist recording the population. The next six digits are the date of observation (DDMMYY). The final two or three digits are the consecutive plant population number for that recorder on that day of the year.

Recorder(s): The name of each botanist collecting data for the population, with the recorder's name first.

Address, Phone: Contact information for Eagle Cap Consulting Inc. (the consultant performing the surveys).

Date, Time: Date format was (DDMMYY), and the time was recorded in military time to the nearest 15 minute interval.

Elevations: Approximate low and high elevations for the special status plant population, in meters.

Landowner: Name of landowner.

Quad Name: USGS 7.5" quad map name.

Slope: The approximate slope at each site was measured using a clinometer or was estimated visually.

GPS File, UTM Coords, Elev.: For each site, a Global Positioning System (GPS) point was recorded at the approximate center of the population using Trimble[®] GeoExplorer GPS tracking units. On a periodic basis this information was downloaded to a portable computer and the files were differentially corrected using base data obtained from either the McCall, Idaho base station, or the Burns, Oregon base station. After correction, the UTM coordinates and elevation above mean sea level (derived from the GPS unit) were entered in these fields. In certain limited instances, the data were not correctable. In these cases the uncorrected UTM coordinates were recorded. In situations where the GeoExplorer units were unable to track sufficient satellites, Garmin[®] 12XL GPS units were used to record uncorrected data. Occasionally, when GPS data were missing for a population, the UTM coordinates were derived from the USGS quad sheets, or with a GIS computer application. In all cases where UTM data were not differentially corrected, an appropriate note was recorded in the **Comment** field explaining the source of the UTM coordinates.

Township, Range, Section, ¹/₄ Section: The legal location of the special status plant population was recorded, if available.

Asp: The general aspect of the population was recorded at each site. Where the aspect changed throughout a population, the dominant aspect was recorded.

Max El, Min El, Max Dist, Min Dist: The approximate maximum and minimum elevations and distances from the MHWM for the population were recorded at each site. The MHWM was located by visually inspecting the top of the flow zone for evidence of previous (or current) water presence (*e.g.*, marks on cliffs, abrupt vegetation changes, etc.). The elevations were recorded in 15 cm height classes (*i.e.* Class 1 = 0 to 15 cm, Class 2 = 16 to 30 cm, etc., or Class -1 = -1 cm to -15 cm, Class -2 = -16 cm to -30 cm, etc.). Height above or below the MHWM was determined using a sight level and a graduated pole. In some cases visual estimation was used to determine elevation. Where elevation was above 20 height classes (3 m) or below -20 height classes, the number 99 or -99 was recorded in the appropriate field. The maximum and minimum lateral distances were recorded in meters. These were determined using a hip chain or pacing for populations located on low slope ground, or visually estimated for high slope units. Where lateral distance was greater than 50 m either above or below the MHWM, the number 99 or -99 was recorded in the appropriate field.

Distance from MHWM to Current WSE: The approximate vertical distance from the Mean High Water Mark to the current Water Surface Elevation was recorded for all populations. The

elevation was measured using a graduated pole and a sight level. In instances where the water level was extremely low the elevation was estimated visually.

County: County name.

New Site?: This box was checked if the special status plant population had not been previously recorded.

EO#: Element Occurrence number for previously recorded special status plant populations.

Survey Intensity: Surveys of special status plant populations were thorough unless access was especially difficult (*e.g.*, steep cliffs, etc.).

Location: The location of the site was described in general terms to a level that would allow a person looking at a map of the area to find the general vicinity of the site (*e.g.*, "Approximately $\frac{1}{2}$ mile upstream from the mouth of Pine Creek on the Oregon side of the river").

Habitat: A short description of the habitat was recorded (*e.g.*, "Dry, rocky slope"). This field was intended to give a general description of the habitat type. More specific habitat variables were recorded in other fields.

Physiography: The general physiography of the site was recorded. A 'wash' was considered to be a shallow ravine or creek with abundant alluvial deposits. A 'drainage' was considered to be a steep ravine or creek with few alluvial deposits.

Moisture: The moisture level of the soil at the time of survey was estimated for each population. Visual inspection of the soil's characteristics and the associated plant community was used to classify the site into one of five categories: Inundated, Saturated, Moist, Dry-Mesic, and Dry-Xeric.

Disturbance Type: A subjective assessment of each of the disturbance types influencing each site was recorded. The disturbance types assessed were: Alluvial (disturbance from sediment erosion and/or deposition from sources other than the Snake River and its reservoirs); Flow zone (flooding disturbance in the zone between low and high water levels along the Snake River and reservoirs); Livestock (trampling or grazing by livestock); Mining (mining structures or activity); Fire (evidence or implication of past fire); Road Corridor (presence of road); Recreation (camping, boating, fishing, etc.); Trail (human foot traffic trail); Industrial (buildings, structures, commercial facilities); Residential (dwellings and associated buildings); Off-Road Vehicle (ORV) Use (all-terrain vehicles, motorcycles, 4x4's, etc.); Undisturbed; and Other (railroad tracks, slumping of soil, flood, etc.). Disturbance levels were recorded based on the following designations: 1 = None (no disturbance evident); 2 = Slight (some light disturbance on parts of the site); 3 = Moderate (a fair amount of disturbance over the majority of the site); 4 = Heavy (a substantial amount of disturbance over most of the site); and 5 = Extreme (an excessive amount of disturbance over nearly all of the site).

It is important to note that ratings were based on implied, as well as observed, disturbance levels. For example, although direct evidence of disturbance from fire was lacking in many populations,
a rating of 2 (slight) or higher was often assigned based on the assumption that fires had periodically disturbed the site in the past, and would do so again in the future. This assumption was made based on general fire frequency patterns in the area, and the site's susceptibility to fire (*e.g.*, amount of vegetation, proximity to natural fire breaks, proximity to ignition sources). Similarly, recreational activities were considered to be a disturbing factor for many populations along the shoreline of the heavily used reservoirs, even though direct evidence of recreational disturbance may not have been currently visible within a particular population.

Surface Substrate: General surface substrate percentages were recorded based on visual estimation using the following categories: fine sediment, coarse w/fines, coarse w/o fines, and bedrock.

Total # of individuals in pop., What was counted?: The total number of plants in the population was either estimated or counted. The appropriate box 'Genets' or 'Ramets' was checked. Species such as *Carex hystricina* were usually counted by clumps, and the 'Genets' box checked.

Phenology, Pop. age class: Appropriate percentages were recorded to describe the age distribution and phenologic stages of the population.

Gross pop. area, Net pop. area: The gross population area was the entire extent of the population, including interstitial spaces not occupied by individuals. The net population area was the summed canopy coverages of the individual plants, not including the interstitial spaces. Both of these measurements were visually estimated by the surveyor(s). Populations were defined at the point where no more individuals of the species occurred for a distance of approximately 100 m.

Vigor: A subjective assessment of the vigor of the entire population was recorded using the following categories: excellent, good, fair, and poor. The rating was based on the professional judgement of the recorder, and included such factors as individual plant health, size of the population, and size of the individual plants.

Percent Cover, Cover Type, Plant Association: The percent cover for each life form category was recorded, including bare soil and rock. The cover type was recorded, by number, based on IPCo's vegetation classification system. The plant association was derived based on the dominant species in the vicinity.

Apparent trend of population: A subjective assessment of the trend of the population was recorded (declining, stable, increasing, unknown). Because there was no evidence of trend at most sites, and these were primarily first-time visits, the trend was usually recorded as 'unknown'.

Overall Site Quality: A subjective assessment of the quality of the entire site.

Abundant Species, Common Species, Uncommon Species: Associated species were recorded for the site.

Threats: Potential threats to the survival of the rare plant population were recorded. These were based on the professional judgement of the investigator(s) who recorded the site. No attempt was made to standardize these threats from investigator to investigator.

How was ID made?: The taxonomic key used to identify the rare plant.

Other knowledgeable individuals: Individuals other than the recorder(s) who can provide information about the rare plant site.

Photo and Roll Number: Color slide photographs were taken to record both the special status plant(s) and the site in general. Each photograph was identified by a seven character code (*e.g.*, RKM01-03). The first three characters are the initials of the surveyor taking the photograph. The following four-number sequence corresponds to the consecutive roll and individual photo numbers, respectively, taken by that surveyor.

Collection ID: If a specimen was taken from the population, its collection identification number was recorded.

Herbarium: If a specimen was taken from the population, the herbarium where it is located was recorded.

Comments: Any additional relevant information was recorded in this section of the form. This includes the reach name and the number of the unit that the special status plant population was found in or near, as well as information on other disturbance types associated with the population, etc.

Site Map: A sketch map of the special status plant site was drawn in the field on the back of the Observation Form. Later, the population was mapped onto a USGS 7.5" Quad map, and a photocopy of the appropriate section was attached to the Observation Form.

3.2 **RESULTS**

3.2.1 Prefield Review

Table 8 (on page 61) shows the complete list of plant species of concern compiled for this investigation. Other sources investigated during the prefield review were useful in resolving taxonomic questions regarding the species of concern. Additional taxonomic keys were particularly helpful in developing the surveyors' search images for those species of concern not addressed by the primary taxonomic authority, *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1973).

3.2.2 Field Investigation

Six species of special status plants, in a total of 47 previously unknown populations, were found in the project area. Of the eight focus species of concern, four were found: *Cyperus schweinitzii* (Schweinitz flatsedge), *Leptodactylon pungens* subspecies (ssp.) *hazeliae* (Hazel's prickly phlox), *Mimulus patulus* (stalk-leaved monkey-flower), and *Teucrium canadense* variety (var.) *occidentale* (American wood sage). Of the eight incidental species of concern, two were found: *Bolandra oregana* (Oregon bolandra) and *Carex hystricina* (porcupine sedge). Table 9 (on page 64) summarizes the special status plant populations found during the investigation. Table 10 (on page 65) lists each rare plant population found.

Sixteen populations of *Haplopappus radiatus* (Snake River golden weed) were also located during the investigation. This is an upland species that was not included as a species of concern for this particular study, but because it is endemic to the Snake River area and surrounding hills, the species is nevertheless of interest to various agencies and the botanical community in general. The *H. radiatus* sites were marked on USGS quadrangle maps, but no further information was recorded.

The Rare Plant Observation Forms and associated USGS quad map sections for all 47 special status plant sites are attached separately in Appendix 8. The locations of the sites, as well as other significant features, are shown on the maps in Figure 29 through Figure 32 beginning on page 94. Photos of the species are shown in Figure 33 through Figure 43 beginning on 98. Complete lists of all plant species encountered during the surveys are included in Appendix 1.

3.2.2.1 Cyperus schweinitzii (Schweinitz flatsedge)

Cyperus schweinitzii is a rhizomatous perennial flatsedge of the Cyperaceae (sedge) family (Figure 33 on page 98). Triangular culms reach a height of one to seven decimeters (dm), with several elongate leaves one to four millimeters (mm) wide attached near the base of the plant. Inflorescences, which form by midsummer, are composed of several elongate, unequal involucral bracts subtending one to several subcapitate spikes. The terminal spike is sessile, and additional spikes are attached at the ends of slender rays up to seven cm long. The numerous linear, flattened spikelets are composed of well-spaced, conspicuously-nerved individual scales which fall at maturity. Achenes are dark and trigonous. *Cyperus schweinitzii* is found in sandy-soiled valley and lowland habitats in the eastern and southwestern United States (U.S.), as well as southeastern Canada, northern Idaho, and Mexico (Hitchcock *et al.* 1969).

Cyperus schweinitzii is currently on the Oregon Natural Heritage Program's (ONHP) "List 2". This classification indicates that the species is "...threatened, endangered or possibly extirpated from Oregon, but ... stable or more common elsewhere." (ONHP 1998). *Cyperus schweinitzii* was designated as one of the eight focus species of concern for the purposes of this rare plant investigation.

Twenty-one populations of *Cyperus schweinitzii* were found in the study area, all during the 1998 summer survey (Figure 29 on page 94). The populations were 75% to 100% in fruit. All

populations were located on the Hells Canyon Downstream reach. Fifteen of the twenty-one populations (71%) are on the Oregon side of the Snake River, and six (29%) are on the Idaho side of the river. The *C. schweinitzii* sites on the Oregon side are distributed over a distance of approximately 37 km, from Roland Creek (SM 26W) upstream to a point between Little Bar Rapids and High Bar Rapids (SM 50W). The sites on the Idaho side of the river are scattered over a distance of approximately 17 km, from just north of Lookout Rapids (SM 31E) upstream to Cat Gulch (SM 42E). Although one *C. schweinitzii* population (on the Oregon side of the river at Camp Creek [SM 33W]) had been tentatively located prior to this investigation, it is included here as a new occurrence because of the previous uncertainty in identification. Otherwise, there were no previously-known occurrences of *C. schweinitzii* in the project vicinity.

The *Cyperus schweinitzii* populations were situated near the river on dry, coarse, sandy loam soils of gentle to moderate slope (generally ranging from three to twenty degrees slope). The majority of the *C. schweinitzii* sites (17 out of 21, or 81%) did not extend below the MHWM into the river's flow zone. Of those that did, three sites extended laterally two m or less below the MHWM, and only one site was situated entirely within the flow zone. Most populations (19 of 21, or 90%) extended horizontally away from the river for 20 or more meters, and surpassed the 20 height-class mark at their highest elevation. The two populations which stayed close to the river (10% of the total) include the one entirely within the flow zone mentioned above, and one which extended laterally only three meters to a maximum of five height classes above the MHWM.

Fifteen of the twenty-one *C. schweinitzii* populations (71%) contained more than five hundred individuals (with most numbering in the thousands). Of the smaller populations, four contained an estimated 150 to 450 individuals, and two contained approximately 30 or fewer individuals. In addition, most of the *C. schweinitzii* sites (13 of 21, or 57%) were estimated to cover a gross area of 2,000 square meters (m^2) or more, with the two largest sites estimated near 50,000 m². Six of the smaller sites covered approximately 100 to 800 m², and the remaining site was estimated at 45 m².

Cyperus schweinitzii plants were primarily found growing in upland shrub savanna communities dominated by *Celtis reticulata* and various grasses such as *Agropyron spicatum*, *Aristida longiseta* (red three-awn), and *Bromus* spp. (Figure 34 on page 98). The communities also contained a variety of weedy forbs (including *Verbascum* spp., *Hypericum perforatum* [common St. John's wort], *Melilotus alba* [white sweet-clover], and *Physalis longifolia* [long-leaved ground cherry]), as well as other species of shrubs (primarily *Rhus* spp. [sumac; poison ivy]).

Recreation, fire, and livestock were the major disturbance types reported for the *Cyperus schweinitzii* populations. Recreational uses were judged to create slight levels of disturbance at ten sites (48%), moderate levels of disturbance at another ten sites (48%), and a heavy level of disturbance at one site (5%). Disturbance from fire was ranked as slight for nine populations (43%), moderate for eight populations (38%), and heavy for two populations (10%). Disturbance from livestock grazing was determined to be slight at eight sites (38%) and moderate at ten sites (48%).

Trail, alluvial, and flow zone disturbances were also reported for some of the 21 *C. schweinitzii* populations. Disturbance from man-made trails was ranked as slight for five populations (24%) and moderate for four populations (19%). Disturbance from alluvial erosion and/or deposition was judged to be slight at five sites (24%), moderate at two sites (10%), and heavy at one site (5%). Flow zone disturbance was reported as slight for four populations (19%), moderate for one population (5%), and heavy for one population (5%).

3.2.2.2 Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)

Leptodactylon pungens ssp. *hazeliae* is a dwarf perennial shrub of the Polemoniaceae (phlox) family (Figure 35 on page 99). Plants are finely stipitate glandular overall, freely branched from the base, and grow in sprawling or mounded form one to two dm tall. Numerous sessile palmate leaves are divided into sharply pointed yet pliable segments 12 to 18 mm long and 0.2 to 0.6 mm wide. The lower leaves are alternate, and the upper leaves are opposite. From April through June, numerous white to lilac flowers two to three cm long are produced in groups of one to three at the ends of herbaceous stems. *Leptodactylon pungens* ssp. *hazeliae* is endemic to dry rock outcrop and talus habitats along the Snake River and lower Salmon River Canyons (Brooks *et al.* 1991, Moseley 1989).

Leptodactylon pungens ssp. *hazeliae* is ranked as a "Species of Concern" by the U.S. Fish and Wildlife Service (ICDC 1997, ONHP 1998). This designation signifies that, pending additional supporting data, the species is being reviewed for consideration as a Candidate for listing as Threatened or Endangered under the Endangered Species Act (ONHP 1998). The U.S. Forest Service (USFS) Region 4 classes *L. pungens* ssp. *hazeliae* as "Sensitive", a classification reserved for taxa for which viability is a concern (ICDC 1997). The Bureau of Land Management (BLM) also ranks *L. pungens* ssp. *hazeliae* as "Sensitive". The BLM definition of "Sensitive" includes "[t]axa (1) that are under status review by U. S. Fish and Wildlife Service..., (2) whose numbers are declining so rapidly that federal listing might become necessary, (3) with typically small and widely dispersed populations, or (4) inhabiting ecological refugia or other specialized unique habitats" (ICDC 1997).

The Idaho Conservation Data Center (ICDC) gives *L. pungens* ssp. *hazeliae* a rank of "G5/T1", meaning that over its entire range the species is "[d]emonstrably widespread, abundant, and secure", but that the subspecies *hazeliae* is "[c]ritically imperiled because of extreme rarity..."(ICDC 1997). The ONHP places *L. pungens* ssp. *hazeliae* on "List 1", indicating that the subspecies is "...endangered or threatened throughout [its] range." (ONHP 1998). Finally, the Oregon Department of Agriculture (ODA) classes *L. pungens* ssp. *hazeliae* as a "Candidate" species, (*i.e.*, a native plant species that needs further study to determine its conservation status) (ONHP 1998). *Leptodactylon pungens* ssp. *hazeliae* was designated as one of the eight focus species of concern for the purposes of this special status plant investigation.

Six populations of *Leptodactylon pungens* ssp. *hazeliae* were found in the study area during the 1999 spring survey (Figure 30 on page 95). One vegetative population was located on the Hells Canyon Downstream reach, and five flowering populations were located on the Hells Canyon Reservoir reach. Five populations (83%) are on the Oregon side of the Snake River, and one

(17%) is on the Idaho side of the river. The *L. pungens* ssp. *hazeliae* site on the Downstream Reach is located at Pleasant Valley Rapids (SM 37W), approximately 53 km north of the other five sites. These five populations are scattered over a distance of approximately three km along both shores of Hells Canyon Reservoir, from just south of Thirty-two Point Creek, to just south of Squaw Creek (SM 77W to SM 79W).

There are seven previously-known *Leptodactylon pungens* ssp. *hazeliae* populations in the vicinity of the project. From approximately 1.3 km downstream of the five new sites on the Hells Canyon Reservoir, a large known occurrence extends north on the Idaho side of the reservoir to Eagle Bar; across the river on the Oregon side are two more small populations. All three of these sites lie at least partially within the 50 m study corridor. Four additional known occurrences are scattered along the Downstream reach as far north as the confluence of the Imnaha River. Two of these sites are located within the 50 m study corridor. All new occurrences lie within the range reported for this species.

All *Leptodactylon pungens* ssp. *hazeliae* populations were found growing on dry, steep to vertical cliffs above the MHWM. Three of the six sites (50%) came to within two height-classes above the MHWM, but the other three began above the 20 height-class mark, and all sites extended well past this elevation. Lateral distance from the river varied, but 50% of the populations were located within zero to nine meters of the MHWM. Two populations (33%) were situated at a distance of 30 or more meters from the MHWM, and one population (17%) spanned the entire lateral width of the study corridor. In addition, all of the *L. pungens* ssp. *hazeliae* populations found were small. Fifty percent consisted of approximately 24 to 48 individuals, and the remaining 50% contained only three to ten individuals. Likewise, four of the six sites covered a gross area of 200 m² or less; the remaining two sites covered approximately 3,000 and 8,000 m².

Since all of the *Leptodactylon pungens* ssp. *hazeliae* plants found were growing on cliffs, 75% to 90% of the surrounding area consisted of bare rock, with the remaining space inhabited by a sparse upland community of small shrubs, grasses and mixed forbs (Figure 36 on page 99). Dominant associated species included *Gutierrezia sarothrae* (broom snakeweed), *Glossopetalon nevadense* (spiny green-bush), *Agropyron spicatum, Bromus tectorum* (cheatgrass), *Penstemon spp.* (penstemon), and *Verbascum thapsus* (common mullein).

The cliff habitats of *L. pungens* ssp. *hazeliae* were found to be relatively undisturbed. Two sites (33%) contained no observable disturbances.

Three sites showed only slight disturbance in one category: one population showed slight disturbance from recreational activities, another population was reported to contain slight flow zone disturbance, and a third population showed slight disturbance from fire. An additional *L. pungens* ssp. *hazeliae* population was determined to contain slight disturbance in both the flow zone and residential activity categories.

3.2.2.3 Mimulus patulus (stalk-leaved monkey-flower)

Mimulus patulus is a slender annual forb of the Scrophulariaceae (figwort) family. Simple or few-branched glandular puberulent stems grow to a height of five to twenty centimeters. Cordate to ovate leaf blades five to twelve millimeters long have toothed edges and petioles one to two times longer than the blades. From May through August, small yellow flowers are produced which average seven to ten millimeters in length, and which are subtended by uniformly-toothed calyces six to seven millimeters long. *Mimulus patulus* is found on damp ground, wet cliffs, and roadcuts from the east slope of the Cascades in Oregon, through Lake and Wallowa Counties to the Snake River Canyon, Idaho (Brooks *et al.* 1991, Peck 1961, Meinke [no date]).

Mimulus patulus is ranked as a "Species of Concern" by the USFWS (ICDC 1997, ONHP 1998). The USFS classes *M. patulus* as "Sensitive" (ICDC 1997, ONHP 1998). The ICDC gives *M. patulus* a rank of "G2Q/S1", meaning that the species is "[i]mperiled because of rarity or because other factors make it demonstrably vulnerable to extinction..." throughout its range, and "[c]ritically imperiled because of extreme rarity..." within the state of Idaho (ICDC 1997). The "Q" ranking indicates that some taxonomic uncertainty exists regarding this species. Within the state of Oregon, the species is ranked S3 meaning that the species is, "Rare, uncommon or threatened, but not immediately imperiled." (ONHP 1998). The ONHP also places *M. patulus* on "List 4", indicating that the species is "of conservation concern but [is] not currently threatened or endangered." (ONHP 1998). Finally, the ODA classes *M. patulus* as "Threatened", meaning that the species is "likely to become endangered within the foreseeable future" (ONHP 1998). *Mimulus patulus* was designated as one of the eight focus species for the purposes of this rare plant investigation.

One population of *Mimulus patulus* was found in the study area during the 1999 spring survey, on the Oxbow Reservoir reach (Figure 31 on page 96). The population was 25% vegetative and 75% in flower. The site is located on the Oregon side of the reservoir, approximately 2.3 km southeast of Sheep Mountain (SM 105W). There are four previously-known occurrences of *M. patulus* in the vicinity of the project: two on the Idaho side of Oxbow reservoir, approximately 4.8 km and 5.6 km north of the 1999 population; one on the Oregon side of the river approximately 35 km north, on Thirty-two Point Creek (identification tentative); and one approximately 98 km north, near the confluence of Cow Creek and the Imnaha River in Oregon. None of these known occurrences is located within the 50 meter-wide survey corridor.

The *Mimulus patulus* population found during this investigation was growing on gently-sloping, damp, rocky ground in a road cut adjacent to State Route 71. The site is located well above the 20-height-class mark, at a lateral distance of approximately 20 m from the MHWM. An estimated 50 individuals are scattered within an area of approximately nine square meters. Eighty percent of the site consists of bare soil and rock (including a concrete retaining wall), and a community of primarily weedy grasses and forbs make up the vegetative layer (Figure 37 on page 100). Dominant associates include *Bromus tectorum, Poa bulbosa, Artemisia ludoviciana* (prairie sage), *Helianthus annuus* (common sunflower), and *Verbascum thapsus*.

Disturbance from the road corridor is recorded as extreme for this site (although a retaining wall does separate the population from the road). Disturbance from recreation, livestock, and alluvial erosion and/or deposition is recorded as slight.

3.2.2.4 Teucrium canadense var. occidentale (American wood sage)

Teucrium canadense var. *occidentale* is a rhizomatous perennial forb of the Lamiaceae (mint) family (Figure 38 on page 100). Plants reach two to ten decimeters in height, and are covered with spreading pubescence, including many glandular hairs. The opposite leaves have short petioles and lance-ovate or lance-oblong serrate blades three to ten centimeters long. Hairs of the upper leaf surface are often appressed. Terminal glandular-hairy bracteate spikes of crowded, irregularly-shaped purplish flowers bloom from June through August. The spikes range from five to twenty centimeters tall, and the flowers are eleven to eighteen millimeters long. *Teucrium canadense* is widespread on stream banks and moist bottomland habitats throughout most of the U.S. and adjacent parts of Canada and Mexico; the variety *occidentale* occurs in the western part of this range (Hitchcock *et al.* 1959, Hitchcock and Cronquist 1973)

The BLM ranks *Teucrium canadense* var. *occidentale* as "Sensitive" (ICDC 1997). The ICDC classes *T. canadense* var. *occidentale* as "G5/T4/S1", meaning that over its entire range the species is "[d]emonstrably widespread, abundant, and secure", and that the variety *occidentale* is "[n]ot rare and apparently secure, but with cause for long-term concern..."; however, within Idaho *T. canadense* var. *occidentale* is "[c]ritically imperiled because of extreme rarity..." (ICDC 1997). *Teucrium canadense* var. *occidentale* was designated as one of the eight focus species for the purposes of this rare plant investigation.

One population of *Teucrium canadense* var. *occidentale* was found in the study area during the 1998 summer survey (Figure 31 on page 96). Plants were 95% vegetative and 5% in fruit. The population is located on the Oregon side of the Hells Canyon Downstream reach, approximately 0.4 km south of the mouth of Temperance Creek (SM 48W). There are three previously-known occurrences of *T. canadense* var. *occidentale* in the project vicinity, all to the south of the 1998 population. The first is approximately 21 km south, near the mouth of Three Creek in Idaho. The second is approximately 26 km south, between Bull Creek and Wild Sheep Creek in Oregon. And the third is approximately 150 km south, near the mouth of the Weiser River in Idaho. Only one of these occurrences is located within the 50 meter-wide survey corridor.

The *Teucrium canadense* var. *occidentale* population found during this investigation was growing on gently-sloping, moist, rocky ground along the shoreline of the Snake River. Plants spanned the MHWM, from one height-class above, to five height-classes below. Horizontal distance from the MHWM ranged from one decimeter above, to two meters below. An estimated fourteen *T. canadense* var. *occidentale* individuals are scattered within an area of approximately six square meters. The site is located within a riparian community dominated by *Acer negundo* (box-elder) and *Spartina pectinata* (prairie cordgrass) (Figure 39 on page 101). Flow zone disturbance is recorded as heavy for this site; recreational disturbance is recorded as slight.

3.2.2.5 Bolandra oregana (bolandra)

Bolandra oregana is a perennial forb of the Saxifragaceae (saxifrage) family (Figure 40 on page 101). Plants are weakly glandular pubescent, and the generally single stems grow to an average height of two to four decimeters. The notched, reniform leaf blades are three to seven centimeters wide, and have petioles up to fifteen centimeters long. Stipules are small near the base of the plant, but become larger and more leaflike towards the inflorescence. Remotely-branched, spreading panicles of one to seven small flowers with linear, purplish-brown petals are produced from May through June. *Bolandra oregana* is found in wet, rocky habitats in the Snake River Canyon and the Columbia River Gorge, as well as along the Imnaha-Snake Divide, and the lower Willamette River in Oregon (Hitchcock *et al.* 1961, Brooks *et al.* 1991).

Bolandra oregana is ranked as "Sensitive" by the USFS and the BLM. The ONHP places *B. oregana* on "List 4" (ONHP 1998). The ODA classes *B. oregana* as a "Candidate" (ONHP 1998). *B. oregana* was designated as one of the eight incidental species of concern for the purposes of this rare plant investigation.

Eight populations of *Bolandra oregana* were found during the 1999 spring survey (Figure 31 on page 96). Plants were entirely in fruit at one site, but ranged from 50% to 80% vegetative and 20% to 50% in flower at the remaining seven sites. Four populations were located on the Hells Canyon Downstream reach, one population on the Hells Canyon Reservoir reach, and three on the Oxbow Reservoir reach. Six of the eight populations are on the Oregon side of the Snake River, and the remaining two are on the Idaho side of the river. The four *B. oregana* sites on the Downstream reach are distributed over a distance of approximately 3.7 km along both banks of the river, from Brush Creek Rapids to the mouth of Hells Canyon Reservoir and Oxbow Reservoir reaches are scattered along approximately 16 km of the Oregon shoreline, from near Oxbow Dam, to the mouth of the Wildhorse River (SM 99W to 111W). There are four previously-known populations of *Bolandra oregana* in the vicinity of the project area, all on the Oregon side of the Snake River. Two are located just north of Brownlee Dam, one is on Hells Canyon Creek, and one is northeast of the confluence of Cow Creek and the Imnaha River. None of these sites is situated within the 50 meter-wide survey area.

All *Bolandra oregana* populations were found growing on moist to wet, steep to vertical cliffs above the MHWM. Two of the eight sites (25%) came to within seven and nine height-classes of the MHWM, but most sites (75%) began above the twenty-height-class mark, and all sites extended well past this elevation. Lateral distance from the river varied, but the majority of the populations (six populations or 75%) were located 25 or more meters from the MHWM. The remaining two populations (25%) came to within three meters of the MHWM.

The size of the *Bolandra oregana* populations varied, but 50% contained 200 or more individuals (with the largest estimated at 1,100 individuals). One population (13%) contained an estimated 85 individuals, and the remaining three populations (38%) consisted of only three to twenty-four individuals. Fifty percent of the *B. oregana* sites covered a gross area of 200 m² or more, with the largest estimated at 1,000 m². The other 50% of the sites ranged in size from 0.5 m² to 120 m².

Since all of the *Bolandra oregana* populations found were growing near seeps or streams in cliffs, much of the surrounding area consisted of bare rock. For five of the eight populations (63%), 50 to 95 percent of the site was bedrock. The remaining space was inhabited by a mixed community of upland shrubs and herbs, as well as a number of riparian species in the wetter areas (Figure 41 on page 102). Dominant associated species include *Rhus radicans* (poison ivy), *Amelanchier alnifolia* (western serviceberry), *Mimulus guttatus* (yellow monkey-flower), *Artemisia ludoviciana, Cystopteris fragilis* (bladder-fern), and *Poa* spp. (bluegrass).

All four *Bolandra oregana* sites on the Downstream reach (50% of the total) contained no observable disturbances. In contrast, the four sites on Hells Canyon and Oxbow Reservoirs were found to be subject to a variety of disturbance types.

Alluvial disturbance was recorded as slight for two of these populations (25% of the total number of *B. oregana* populations found), and extreme for one population (12%). Disturbance from recreational activities was judged to be slight at two sites (25%) and moderate at one site (12%). Road corridor disturbance was reported as slight at two sites (25%) and extreme at one site (12%). In addition, the smallest population of *B. oregana* also contained slight disturbance from livestock grazing, fire, and off-road vehicle use, as well as extreme disturbance from recent bulldozing and brush removal activities.

3.2.2.6 Carex hystricina (porcupine sedge)

Carex hystricina is a rhizomatous perennial sedge of the Cyperaceae (sedge) family (Figure 42 102). Culms average three to six decimeters in height, with elongate, generally septate nodulose leaves three to nine millimeters wide. Inflorescences, which form from May through June, consist of one erect terminal staminate spike two to four centimeters long, and several pistillate spikes of about the same length, spreading-ascending or nodding on slender peduncles. The lowermost spike is subtended by a well-developed leaf blade. The leaves subtending other spikes are much reduced or wanting. The numerous, crowded, slightly inflated perigynia of the pistillate spikes are subtended by short, hyaline scales one to two millimeters long, with prominent awns two to six millimeters long. Achenes are trigonous. *Carex hystricina* is found in wet riparian habitats throughout much of the U.S. (Hitchcock *et al.* 1969).

Carex hystricina is currently placed on "List 2" by the ONHP (1998). The species was designated as one of eight incidental species of concern for the purposes of this special status plant investigation.

Ten populations of *Carex hystricina* were found during the 1998 and 1999 survey seasons (Figure 32 on page 97). Plants were 90% vegetative at two sites, 100% in flower at five sites, and 75% to 100% in fruit at three sites. Three populations were located on the Hells Canyon Downstream reach, and seven were located on the Oxbow Reservoir reach. Six of the ten populations are on the Oregon side of the Snake River, and four are on the Idaho side. The northernmost *C. hystricina* site, on the Downstream reach, is located just upstream from the mouth of Dry Creek, Idaho (SM 55W). Approximately 42 km to the south, the other two Downstream reach sites are located within approximately 5 km of each other, from just north of

Yreka Creek, Oregon (SM 53W) to between Pony and Rush Creeks, Oregon (SM 55W). Approximately 61 km further south, the seven *C. hystricina* sites on the Oxbow Reservoir reach are distributed over a distance of approximately 16 km on both sides of the river, from just south of Oxbow Dam (SM 100W), to the mouth of the Wildhorse River (SM 111W).

There are two previously known occurrences of *Carex hystricina* in the vicinity of the project. The first is on Hells Canyon Reservoir, just south of Homestead, Oregon, and the second is on Oxbow Reservoir, across from the mouth of Warm Springs Creek. Both sites are located in Oregon and are within the 50 meter-wide survey corridor.

The *Carex hystricina* populations were generally found growing in wet, fine to cobbly silt loam soils on low to moderate slopes of zero to fifteen degrees. Four of the populations (40%) were situated entirely below the MHWM along the Snake River, to a minimum elevation of minus three height-classes, and a maximum lateral distance of minus one and one-half meters. The remaining six (60%) were located along tributary drainages, 27 or more meters in lateral distance above the river's MHWM, and well above the twenty-height-class mark in elevation. Two of these tributary populations also extended onto steeper slopes, including one population which contained plants growing in bedrock at the base of a waterfall.

Nine of the ten *Carex hystricina* populations consisted of 50 individuals or fewer. Of these, two were represented by only one plant. The remaining population was estimated at 100 individuals. In addition, 80% of the sites covered 20 m² or less. The two larger sites were estimated at 800 m² and 2,000 m².

Carex hystricina plants were found growing in either relatively bare flow zone areas, or relatively lush riparian communities (Figure 43 on page 103). A wide variety of riparian and upland forbs and shrubs were present, including *Iris pseudacorus* (yellow flag), *Mimulus guttatus, Dipsacus sylvestris, Rumex crispus* (curly dock), *Rhus radicans,* and *Celtis reticulata*. Generally these communities contained relatively few graminoid species other than *C. hystricina*.

Seven of the ten *Carex hystricina* sites showed evidence of disturbance in three or more categories. Disturbance from livestock grazing was slight at four sites, moderate at one site, heavy at two sites, and extreme at one site. Disturbance from alluvial erosion and/or deposition was recorded as slight at one site, moderate at four sites, heavy at one site, and extreme at one site. Flow zone disturbance was heavy at one site, and extreme at four sites. Disturbance from recreational activities was slight at four sites and moderate at one site. Slight levels of disturbance by fire were observed at four sites. Disturbance from road corridors was slight at two sites. One site showed heavy impacts from pack trail use, and another site showed slight impacts from non-native weedy species. Finally, one site sustained slight disturbance from off-road vehicle use, as well as extreme disturbance from recent bulldozing and brush removal activities.

3.3 DISCUSSION

3.3.1 General Considerations

The rare plant portion of this investigation was intended to provide a general representation of the targeted rare plant species within the project area, and not to locate every rare plant population present. The investigators thoroughly surveyed one-quarter of the length of the shoreline within the study area, and performed targeted surveys between units in likely habitat. Because parts of the shoreline in between units were not thoroughly surveyed, it is likely that undiscovered populations of rare plant species exist within the study area. The results of this investigation should be interpreted in this light. If ground disturbing activities are planned within the study area, additional site-specific surveys would be needed to assess potential project-related impacts to rare plant species.

Certain elements of the data collection protocol require the investigator to make subjective judgements about various factors. The disturbance type ratings, the vigor and site quality assessment, the assessment of the apparent trend of the population, and the assessment of the potential threats to the survival of the population are all subject to considerable individual interpretation. The investigators met on a regular basis during the field season to discuss these issues in an attempt to standardize data collection for the project. While this minimizes investigator bias, some differences in interpretation inevitably remain, and this should be remembered when interpreting the results.

3.3.2 Potential Impacts to Species of Concern

It is difficult to predict impacts to special status plant populations based on observed disturbance levels within the populations. Little is known about how these species respond to various disturbances, and which habitat factors promote or inhibit the survival of the populations. It is possible that certain of the recorded disturbances (for example Fire or Alluvial) may have a beneficial effect on some of the species of concern. Other disturbances (such as ORV Use or Livestock) may have a detrimental effect. Although these effects have not been quantified in the literature, certain general assumptions can be made.

It can be assumed, for instance, that permanent or long-term seasonal inundation of nonemergent plant populations would likely result in the eradication of those populations. With the possible exception of *Carex hystricina*, all of the six special status species found during this investigation fall into this non-emergent category, and would likely be adversely affected if water levels permanently rise and inundate populations.

Conversely, a long-term drying of the soil would be expected to have an adverse effect on those species requiring moist habitats to survive. Of the special status species found, *Bolandra oregana*, *Carex hystricina*, *Mimulus patulus*, and *Teucrium canadense* var. *occidentale* are all associated with riparian habitats. As expected, all of the populations of the above four species found during this investigation were growing where the soil was moist, saturated, or (in a few cases) inundated at the time the data were recorded. For all four of these species, significant long-

term lowering of soil moisture levels within the site would likely have a detrimental effect on the viability of the population.

Specific to the river and reservoirs, eight of the forty-seven populations of special status plant species found during the investigation were located partly or completely below the MHWM, which may place these populations at risk if changes are made to river or reservoir water levels. These eight populations include one population of *Teucrium canadense* var. *occidentale*, three populations of *Cyperus schweinitzii*, and four populations of *Carex hystricina*. While these species do survive occasional flooding when water levels are highest, they are not found in fully aquatic habitats. Therefore it must be assumed that permanently elevated water levels would eventually kill any fully submerged plants.

Impacts to these eight populations from permanently lowered water levels would vary. *Cyperus schweinitzii* is a vigorous species which grows in a variety of habitats. Were the river level to fall and remain low indefinitely, it is likely that the *C. schweinitzii* populations (both above and below the MHWM) would suffer few if any negative impacts, and would perhaps even colonize the newly exposed riverbank. Impacts to *T. canadense* var. *occidentale* and *C. hystricina* would depend on how far the water level dropped. If the soil remained moist throughout the year, these populations would likely be able to survive. But if the soil became permanently drier, it is possible that these populations would be eradicated.

The remaining 39 rare plant populations that were situated entirely above the MHWM can be expected to be negatively impacted only by permanently elevated water levels. In such a situation, as mentioned above, fully submerged plants would eventually die. Lowered river or reservoir levels would likely not affect these populations, because they already grow in dry habitats, or because they grow along tributary seeps or streams which would continue to flow independent of the river or reservoir level.

As mentioned above, the effect that changes in other disturbance levels would have on special status plant populations is difficult to predict. It can be assumed, however, that severe ground disturbance within a population, resulting from such activities as road construction, agricultural clearing, recreational facility development, or other ground or vegetation modifying activities, would adversely affect the population. This is more likely to be a factor on the Hells Canyon Reservoir, Oxbow Reservoir, and Weiser reaches where human activity levels are highest. In many cases, where these intensive ground disturbing activities are proposed, pre-construction impact assessment studies, coupled with project-specific mitigation efforts, will reduce effects on rare plants significantly.

References

- Brooks, Paula J., Karl Urban, Eugene Yates, and Charles G. Johnson, Jr. 1991. Sensitive Plants of the Malheur, Ochoco, Umatilla, and the Wallowa-Whitman National Forests. USDA-Forest Service, Pacific Northwest Region, Portland, Oregon.
- Burton, Lynn. 1993*a*. Letter to Ed Cole (Hells Canyon National Recreation Area, District Ranger) dated July 21, 1993. Unpublished report summary. Hells Canyon National Recreation Area, Enterprise, Oregon.
- Burton, Lynn. 1993b. Letter to Ed Cole (Hells Canyon National Recreation Area, District Ranger) dated September 16, 1993. Unpublished report summary. Hells Canyon National Recreation Area, Enterprise, Oregon.
- Eagle Cap Consulting Inc. 1998. Unpublished database of Northwest plant species. Beaverton, Oregon.
- Hickman, James C., editor. 1993. The Jepson Manual. University of California Press, Berkeley, California. 1400pp.
- Hitchcock, C. Leo, and Arthur Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle, Washington. 730pp.
- Hitchcock, C. Leo, Arthur Cronquist, Marion Ownbey, and J.W. Thompson. 1955-1969.Vascular Plants of the Pacific Northwest (5 volumes). University of Washington Press, Seattle, Washington.
- Idaho Conservation Data Center (ICDC). 1997. Rare plants tracked by the Idaho Conservation Data Center (updated August 1997). http://www.state.id.us/fishgame/plant.htm. Idaho Conservation Data Center, Boise, Idaho.
- Meinke, Robert. No Date. Key to *Mimulus* (section *Paradanthus*) in the Pacific Northwest (draft).
- Moseley, R. K. 1989. Field investigations of *Leptodactylon pungens* ssp. *hazeliae* (Hazel's prickly phlox) and *Mirabilis macfarlanei* (Macfarlane's four-o-clock), Region 4 Sensitive Species, on the Payette National Forest, with notes on *Astragalus vallaris* (Snake Canyon milkvetch) and *Rubus bartonianus* (bartonberry). Unpublished report on file at: Idaho Conservation Data Center, Boise, Idaho.
- Oregon Department of Agriculture. 1996. State of Oregon noxious weed list (current as of 1/1/96). Oregon Department of Agriculture, Plant Division, Salem, Oregon.
- Oregon Natural Heritage Program (ONHP). 1998. Rare, Threatened & Endangered Species: *Online Tables* (updated May 1998). http://www.heritage.tnc.org/nhp/us/or/tabintro.htm. Oregon Natural Heritage Program, Portland, Oregon.

- Peck, Morton Eaton. 1961. A Manual of the Higher Plants of Oregon. Binfords and Mort, Portland, Oregon. 936pp.
- Rasmussen, L. M. 1976. Soil Survey of Payette County, Idaho. USDA Natural Resources Conservation Service, Weiser, Idaho.
- State of Idaho. 1996. Idaho Code, Title 22, Chapter 24 §22-2473. Boise, Idaho.
- US Forest Service. 1994. A checklist of plants of the Wallowa-Whitman National Forest. Wallowa-Whitman National Forest, Baker City, Oregon. 130pp.
- Vallier, Tracy. 1998. Islands and Rapids: A Geologic Story of Hells Canyon. Confluence Press, Lewiston Idaho. 151pp.
- Western Regional Climate Center (WRCC). 1998*a*. Brownlee Dam, Idaho: period of record monthly climate summary. WRCC, Reno, Nevada.
- Western Regional Climate Center (WRCC). 1998b. Weiser 2 SE, Idaho: period of record monthly climate summary. WRCC, Reno, Nevada.
- Whitson, Tom D., Larry C. Burrill, Steven A. Dewey, David W. Cudney, B. E. Nelson, Richard D. Lee, and Robert Parker. 1992. Weeds of the West. Pioneer of Jackson Hole, Jackson, Wyoming. 630pp.

Tables

	Scientific Name	Common Name	IPCo Code ¹	ID List ²	OR List ³
	Abutilon theophrasti	velvetleaf			Х
	Acaena novae-zelandiae	biddy-biddy			Х
*	Aegilops cylindrica	jointed goatgrass	AECY	Х	Х
	Aegilops ovata	ovate goatgrass			Х
	Aegilops tauschii	Tausch's goatgrass			Х
	Aegilops triuncialis	barbed goatgrass			Х
	Aegilops ventricosa	bulbed goatgrass			Х
*	Agropyron repens	quackgrass	AGRE		Х
	Alhagi pseudalhagi	camelthorn			Х
	Ambrosia artemisiifolia	ragweed			Х
	Ambrosia tomentosa	skeletonleaf bursage		Х	Х
*	Amorpha fruiticosa	false indigo	AMFR		
*	Cardaria draba	whitetop	CADR	Х	Х
*	Carduus nutans	musk thistle		Х	Х
	Carduus pycnocephalus	Italian thistle			Х
	Carduus tenuiflorus	slender-flowered thistle			Х
	Carthamus baeticus	smooth distaff thistle			Х
	Carthamus lanatus	woolly distaff thistle			Х
	Carthamus leucocaulos	whitestem distaff thistle			Х
	Carthamus oxycantha	wild safflower			Х
	Centaurea calcitrapa	purple starthistle			Х
*	Centaurea diffusa	diffuse knapweed	CEDI	Х	Х
	Centaurea iberica	Iberian starthistle			Х
	Centaurea macrocephala	big-headed knapweed			Х
*	Centaurea maculosa	spotted knapweed	CEMA	Х	Х
	Centaurea nigrescens	short-fringed knapweed			Х
	Centaurea pratensis	meadow knapweed		Х	Х
*	Centaurea repens	Russian knapweed		Х	Х
*	Centaurea solstitialis	yellow starthistle	CEST	Х	Х
	Centaurea trichocephals	feather-headed knapweed			Х
	Centaurea virgata	squarrose knapweed			Х
*	Chondrilla juncea	rush skeletonweed	CHJU	Х	Х
*	Cirsium arvense	Canada thistle	CIAR	Х	Х
*	Cirsium vulgare	bull thistle	CIVU		Х
*	Conium maculatum	poison hemlock	COMA4	Х	Х
*	Convolvulus arvensis	field bindweed	COAR	Х	Х
*	Crupina vulgaris	common crupina		Х	Х
*	Cuscuta spp	dodder	CUSCU		Х
*	Cynoglossum officinale	houndstongue	CYOF		Х
	Cyperus esculentus	yellow nutsedge			Х
	Cyperus rotundus	purple Nutsedge			Х

Table 1: Noxious Weeds and Other Invasive Species Considered During the Study

	Scientific Name	Common Name	IPCo Code ¹	ID List ²	OR List ³
	Cytisus scoparius	Scotch broom		Х	Х
	Cytisus striatus	Portuguese broom			Х
*	Daucus carota	wild carrot		Х	
	Elodea densa	South American waterweed			Х
*	Elaeagnus angustifolia	Russian-olive	ELAN		
	Equisetum arvense	western horsetail			Х
	Equisetum telmateia	giant horsetail			Х
	Euphorbia dentata	toothed spurge		Х	
*	Euphorbia esula	leafy spurge	EUES	Х	Х
	Halogeton glomeratus	halogeton			Х
	Helianthus ciliaris	Texas blueweed			Х
	Hemizonia pungens	spikeweed			Х
	Heracleum auranthiacum	orange hawkweed		Х	
	Heracleum mantegazzianum	giant hogweed			Х
	Heracleum pratense	yellow hawkweed		Х	
	Hydrilla verticillata	hydrilla			Х
*	Hyoscyamus niger	henbane		Х	
*	Hypericum perforatum	St. Johnswort (Klamath weed)	HYPE		Х
*	Isatis tinctoria	dyers woad	ISTI	х	X
*	Kochia scoparia	kochia	KOSC	~	X
*	Lepidium latifolium	perennial pepperweed	LELA	Х	X
	Lepyrodiclis holosteoides	lepyrodiclus		Λ	X
*	Linaria dalmatica	dalmatian toadflax	LIDA	х	X
*	Linaria vulgaris	yellow toadflax	LIDA	X	X
*	Lythrum salicaria	purple loosestrife	LYSA	X	X
	Milium verale	milium	LIGA	X	~
	Myriophyllum spicatum	Eurasian watermilfoil		Λ	Х
	Nardus stricta				X
*	Onopordum acanthium	matgrass Scotch thistle	ONAC	х	X
	Panicum milicaeum		UNAC	^	X
		wild proso millet			X
*	Peganum harmala	African rue			^
*	Phalaris arundinacea	reed canarygrass	PHAR		v
	Polygonum cuspidatum	Japanese knotweed			X
	Polygonum polystachyum	Himalayan knotweed			Х
*	Polygonum sachalinense	giant knotweed	DODE		Х
~	Potentilla recta	sulfur cinquefoil	PORE		Х
	Pueraria lobata	kudzu			Х
т	Rorippa sylvestris	creeping yellow cress	<u> </u>		Х
*	Salvia aethiopis	Mediterranean sage	SAAE		Х
^	Senecio jacobaea	tansy ragwort		Х	Х
	Silybum marianum	milk thistle			Х
*	Solanum elaegnifolium	silverleaf nightshade		Х	Х
*	Solanum rostratum	buffaloburr		Х	Х
*	Sonchus arvensis	perennial sowthistle		Х	
	Sorghum halepense	Johnsongrass		Х	Х

	Scientific Name	Common Name	IPCo Code ¹	ID List ²	OR List ³
	Spartina alterniflora	smooth cordgrass			Х
	Spartina anglica	spartina			Х
	Spartina densiflora	spartina			Х
	Spartina patens	spartina			Х
	Spartium junceum	Spanish broom			Х
	Sphaerophysa salsula	Austrian peaweed			Х
*	Taeniatherum caput-medusae	medusahead rye	TACA		Х
*	<i>Tamarix</i> spp.	salt cedar			
*	Tribulus terrestris	puncturevine	TRTE	Х	Х
	Tussilago farfara	coltsfoot			Х
	Ulex europaeus	gorse			Х
*	Xanthium spinsosum	spiny cocklebur			Х
	Zygophyllum fabago	Syrian bean-caper		Х	Х

The 41 species which have been flagged with an asterisk (*) are known or highly suspected to occur within the project area and are the focus of the investigation. However, data was collected on any of the species on this list when encountered within the study area.

- **IPCo Code**¹ = 1998 species code used as shorthand to describe plant species during IPCo vegetation studies. Not all species on this list have been assigned codes by IPCo.
- **ID** List² = Those species listed on the State of Idaho's Noxious Weed List (State of Idaho 1996)
- **OR List**³ = Those species listed on the State of Oregon's Noxious Weed List (Oregon Department of Agriculture 1996)

Table 2: Total Number of Weed Populations Found

		No. of weed populations recorded									
Scientific Name	Common Name	HC Down- stream	HC Res.	Oxbow Res.	Brownlee Res.	Weiser	All reaches				
Onopordum acanthium	Scotch thistle	38	29	21	119	31	238				
Amorpha fruticosa	false indigo	11	47	23	124	14	219				
Cynoglossum officinale	common houndstounge	48	47	24	52	0	171				
Hypericum perforatum	St. John's wort	112	25	12	2	0	151				
Lepidium latifolium	broadleaved pepperweed	0	33	21	64	31	149				
Convolvulus arvensis	field morning glory	22	18	13	72	3	128				
Taeniatherum caput-medusae	medusahead wildrye	0	24	23	61	11	119				
Phalaris arundinacea	reed canarygrass	3	20	1	62	27	113				
Tribulus terrestris	puncturevine	4	34	15	39	3	95				
Conium maculatum	poison hemlock	1	6	11	42	32	92				
Cirsium vulgare	bull thistle	28	26	12	9	6	81				
Cardaria draba	whitetop	4	0	3	39	9	55				
Cirsium arvense	Canada thistle	2	1	1	20	26	50				
<i>Tamarix</i> sp.	tamarisk	0	0	0	31	14	45				
Ambrosia artemisiifolia	annual ragweed	1	15	16	1	0	33				
Elaeagnus angustifolia	Russian olive	0	1	3	6	14	24				
Potentilla recta	erect cinquefoil	21	0	0	0	0	21				
Linaria dalmatica	dalmatian toadflax	3	7	0	9	0	19				
Chondrilla juncea	rush skeletonweed	6	0	0	11	0	17				
Kochia scoparia	kochia	0	0	1	8	5	14				
Lythrum salicaria	purple loosestrife	0	1	3	5	4	13				
Cuscuta sp.	dodder	0	6	0	2	2	10				

		Ro. of weed populations recorded										
Scientific Name	Common Name	HC Down- stream	HC Res.	Oxbow Res.	Brownlee Res.	Weiser	All reaches					
Salvia aethiopis	Mediterranean sage	0	7	3	0	0	10					
Equisetum arvense	common horsetail	9	0	0	0	0	9					
Agropyron repens	quackgrass	1	1	1	4	0	7					
Cyperus esculentus	yellow nut sedge	6	0	0	1	0	7					
Centaurea diffusa	diffuse knapweed	0	6	0	0	0	6					
Aegilops cylindrica	jointed goatgrass	0	1	2	0	0	3					
Euphorbia esula	leafy spurge	0	0	0	1	2	3					
Crupina vulgaris	common crupina	1	0	0	0	0	1					
Daucus carota	wild carrot	0	0	0	1	0	1					
Polygonum cuspidatum	Japanese knotweed	0	1	0	0	0	1					
	Totals	321	356	209	785	234	1905					

This table gives the total number of populations recorded for a particular species. For example, 4 populations of *Agropyron repens* were found within the Brownlee Reservoir reach, and 7 populations of the species were found in all of the units surveyed (405 units). Note that where two units are adjoining (*e.g.* units 040-4E and 041-1E), a single population may span the dividing line and be located in both units.

Table 3: Weed Species Presence by reach

		No. of Units in which Species is Present (% of surveyed units)										
Scientific Name	Common Name	HC Down- stream	HC Res.	Oxbow Res.	Brownlee Res.	Weiser	Total					
Onopordum acanthium	Scotch thistle	35 (28%)	27 (50%)	23 (88%)	110 (66%)	31 (94%)	226 (56%)					
Amorpha fruticosa	false indigo	10 (8%)	39 (72%)	22 (85%)	112 (67%)	12 (36%)	195 (48%)					
Cynoglossum officinale	common houndstounge	41 (33%)	44 (81%)	22 (85%)	49 (30%)	0	156 (39%)					
Hypericum perforatum	St. John's wort	110(87%)	21 (39%)	12 (46%)	2 (1%)	0	145 (36%)					
Lepidium latifolium	broadleaved pepperweed	0	28 (52%)	22 (85%)	64 (39%)	31 (94%)	145 (36%)					
Taeniatherum caput-medusae	medusahead wildrye	0	22 (41%)	24 (92%)	63 (38%)	10 (30%)	119 (29%)					
Convolvulus arvensis	field morning glory	21 (17%)	15 (28%)	13 (50%)	61 (37%)	3 (9%)	113 (28%)					
Phalaris arundinacea	reed canarygrass	2 (2%)	17 (31%)	1 (4%)	59 (36%)	26 (79%)	105 (26%)					
Tribulus terrestris	puncturevine	4 (3%)	29 (54%)	16 (62%)	36 (22%)	3 (9%)	88 (22%)					
Conium maculatum	poison hemlock	1 (1%)	6 (11%)	10 (38%)	37 (22%)	32 (97%)	86 (21%)					
Cirsium vulgare	bull thistle	25 (20%)	20 (37%)	12 (46%)	9 (5%)	6 (18%)	72 (18%)					
Cardaria draba	whitetop	3 (2%)	0	3 (12%)	36 (22%)	9 (27%)	51 (13%)					
Cirsium arvense	Canada thistle	2 (2%)	1 (2%)	1 (4%)	19 (11%)	24 (73%)	47 (12%)					
<i>Tamarix</i> sp.	tamarisk	0	0	0	31 (19%)	14 (42%)	45 (11%)					
Ambrosia artemisiifolia	annual ragweed	1 (1%)	11 (20%)	16 (62%)	1 (1%)	0	29 (7%)					
Elaeagnus angustifolia	Russian olive	0	1 (2%)	3 (12%)	6 (4%)	13 (39%)	23 (6%)					
Linaria dalmatica	dalmatian toadflax	3 (2%)	7 (13%)	0	9 (5%)	0	19 (5%)					
Potentilla recta	erect cinquefoil	18 (14%)	0	0	0	0	18 (4%)					
Chondrilla juncea	rush skeletonweed	5 (4%)	0	0	10 (6%)	0	15 (4%)					
Kochia scoparia	kochia	0	0	1 (4%)	9 (5%)	5 (15%)	15 (4%)					
Lythrum salicaria	purple loosestrife	0	1 (2%)	3 (12%)	5 (3%)	4 (12%)	13 (3%)					
Cuscuta sp.	dodder	0	6 (11%)	0	2 (1%)	2 (6%)	10 (2%)					

-----No. of Units in which Species is Present (% of surveyed units)------

		mich Species	is Present (%)	oi suiveyeu	umis)		
Scientific Name	Common Name	HC Down- stream	HC Res.	Oxbow Res.	Brownlee Res.	Weiser	Total
Salvia aethiopis	Mediterranean sage	0	6 (11%)	3 (12%)	0	0	9 (2%)
Equisetum arvense	common horsetail	8 (6%)	0	0	0	0	8 (2%)
Agropyron repens	quackgrass	1 (1%)	1 (2%)	1 (4%)	4 (2%)	0	7 (2%)
Cyperus esculentus	yellow nut sedge	6 (5%)	0	0	1 (1%)	0	7 (2%)
Centaurea diffusa	diffuse knapweed	0	6 (11%)	0	0	0	6 (1%)
Euphorbia esula	leafy spurge	0	0	0	1 (1%)	2 (6%)	3 (1%)
Aegilops cylindrica	jointed goatgrass	0	1 (2%)	2 (8%)	0	0	3 (1%)
Crupina vulgaris	common crupina	1 (1%)	0	0	0	0	1 (0%)
Daucus carota	wild carrot	0	0	0	1 (1%)	0	1 (0%)
Polygonum cuspidatum	Japanese knotweed	0	1 (2%)	0	0	0	1 (0%)

This table lists the number of quarter-mile units that contain a given species. The value given in parentheses is the percentage of the total surveyed units, (in that particular reach or in the project area as a whole), that contain the given species. For example, *Agropyron repens* was found in 3 of the units surveyed on the Brownlee Reservoir reach, which is 4% of the total units surveyed for that reach. Further, out of the 405 units surveyed on all 5 reaches, *Agropyron repens* was found in 7 units, or 2% of the total. Note that where two units are adjoining (*e.g.* units 040-4E and 041-1E), a single population may span the dividing line and be located in both units.

Total units surveyed for each reach are as follows:

Hells Canyon Downstream reach: 126 Hells Canyon Reservoir reach: 54 Oxbow Reservoir reach: 26 Brownlee Reservoir reach 166 Weiser reach: 33 Total: 405

-----Average Total Net Area Per Unit (m²)------HC Avg. for all HC Down-Oxbow **Brownlee** units **Scientific Name Common Name** stream Res. Res. Res. Weiser surveyed Taeniatherum caput-medusae medusahead wildrye 0 300 2000 400 40 300 Lepidium latifolium broadleaved pepperweed 6 0 40 200 1000 200 Conium maculatum 40 poison hemlock 0.008 10 70 800 90 Hypericum perforatum St. John's wort 200 7 200 0.008 0 80 Onopordum acanthium Scotch thistle 30 100 70 90 200 80 Tamarix sp. tamarisk 0 0 0 200 40 80 2 Cardaria draba whitetop 7 0 100 30 70 Phalaris arundinacea reed canarygrass 0.2 9 0.2 80 300 60 false indigo Amorpha fruticosa 0.7 40 40 40 7 20 field morning glory Convolvulus arvensis 1 50 30 20 5 20 Cynoglossum officinale common houndstounge 8 20 100 4 0 20 Elaeagnus angustifolia Russian olive 0.2 3 200 20 0 2 Kochia scoparia kochia 0 0 0.06 4 70 8 Canada thistle 7 Cirsium arvense 0.2 0.1 0.2 5 60 Linaria dalmatica dalmatian toadflax 0.1 5 0 10 0 7 5 7 Tribulus terrestris puncturevine 0.1 30 20 0.8 0.002 5 Ambrosia artemisiifolia annual ragweed 10 50 0.02 0 erect cinquefoil Potentilla recta 20 0 0 0 0 5 Salvia aethiopis Mediterranean sage 0 3 40 0 0 3 dodder 20 0.009 0.09 2 Cuscuta sp. 0 0 Crupina vulgaris common crupina 0 2 8 0 0 0 Euphorbia esula leafy spurge 0 0 0 0.005 20 2

Table 4: Average Total Net Area Occupied By Weed Populations Per Unit Surveyed

			Av	verage Total Ne	et Area Per Uni	it (m²)	
Scientific Name	Common Name	HC Down- stream	HC Res.	Oxbow Res.	Brownlee Res.	Weiser	Avg. for all units surveyed
Polygonum cuspidatum	Japanese knotweed	0	7	0	0	0	1
Cirsium vulgare	bull thistle	1	1	4	0.05	0.7	0.8
Agropyron repens	quackgrass	0.004	0.7	1	1	0	0.6
Centaurea diffusa	diffuse knapweed	0	4	0	0	0	0.6
Aegilops cylindrica	jointed goatgrass	0	4	0.6	0	0	0.5
Equisetum arvense	common horsetail	2	0	0	0	0	0.5
Lythrum salicaria	purple loosestrife	0	0.009	0.08	0.8	0.8	0.4
Chondrilla juncea	rush skeletonweed	0.7	0	0	0.3	0	0.1
Cyperus esculentus	yellow nut sedge	0.2	0	0	0.09	0	0.08
Daucus carota	wild carrot	0	0	0	0.002	0	0.0007

This table lists the average net area occupied by a given species per quarter-mile unit (averaged among all units in the reach including those without any populations of the given species). For example, *Cirsium vulgare* averages a net area of 1 m² per quarter-mile unit for all units in the Hells Canyon Downstream reach (54 units). Further, the species averages 0.8 m² per quarter-mile unit for all surveyed units in all five reaches (405 units).

Species	Alluvial	Flow- zone	Live- stock	Mining	Fire	Road	Rec.	Trail	Ind.	Ag.	Res.	ORV	Other	Relation to Reference Line	Reach	Flow zone Association?
Aegilops cylindrica						Х	Х							(above)		(NO)
Agropyron repens					Х			Х			Х	Х	Х			
Ambrosia artemisiifolia											Х				Oxbow HC Res.	
Amorpha fruticosa		ХХ					ХХ							below		YES
Cardaria draba			Х							Х	Х				Brownlee Weiser	
Centaurea diffusa						Х									(HC Res.)	
Chondrilla juncea			Х												Brownlee Downstream	
Cirsium arvense										Х			Х		Weiser	
Cirsium vulgare		00													Downstream Oxbow HC Res.	NO
Conium maculatum															Weiser Oxbow Brownlee	
Convolvulus arvensis					00										Downstream Brownlee	
Crupina vulgaris																
Cuscuta sp.						Х										
Cyperus esculentus	Х	Х												(below)		(YES)
Cynoglossum officinale		00				00									HC Res. Oxbow Brownlee Downstream	NO
Daucus carota																
Elaeagnus angustifolia										Х	Х				Weiser	
Equisetum arvense	Х	Х						Х						(below)	(Downstream)	(YES)
Euphorbia esula	Х	Х			х					Х						
Hypericum perforatum					ΧХ		00							crosses	Downstream	
Kochia scoparia					Х								Х	(above)		(NO)

Table 5: Factors Affecting the PRESENCE of Weed Species

Species	Alluvial	Flow- zone	Live- stock	Mining	Fire	Road	Rec.	Trail	Ind.	Ag.	Res.	ORV	Other	Relation to Reference Line	Reach	Flow zone Association?
Lepidium latifolium		XX												crosses	Oxbow Weiser HC Res. Brownlee	YES
Linaria dalmatica						Х		Х				Х	Х		HC Res. Brownlee Downstream	
Lythrum salicaria		Х												(below)		(YES)
Onopordum acanthium													ХХ	crosses above	Brownlee	NO
Phalaris arundinacea		ХХ												below	Weiser	YES
Polygonum cuspidatum																
Potentilla recta								Х						(above)	Downstream	(NO)
Salvia aethiopis														(above)	(HC Res.) (Oxbow)	(NO)
Taeniatherum caput- medusae		00	XX											crosses above	Oxbow Brownlee HC Res.	NO
<i>Tamarix</i> sp.		Х										х		below	Downstream HC Res. Oxbow	YES
Tribulus terrestris			00		00	XX	XX									

For disturbance factors: XX = significant positive effect. OO = significant negative effect. x = number of populations too small to analyze, but distribution suggests there may be an association between the weed and the factor (*i.e.*, the disturbance type was recorded more than twice as often in populations of that particular species than across all the populations of all species). In the "Reach" and "Relation to Reference Line" columns, the reach(es) or elevational category(ies) with which the species is most strongly associated are listed. See text and for full details. Entries in these columns in parentheses indicate that too few populations were found to conduct statistical analyses, but that the distribution suggests that the factor may play a role. Species were determined to have an association with the flow zone, if flow zone disturbance was a positive predictor of weed presence, and/or if the species was significantly associated with the elevational categories "crosses" or "below" reference line. Species with no association with the flow zone are those for which flow zone disturbance is a negative, significant predictor of presence and/or the species is associated with areas above the reference line. Species with no classification in this column did not clearly fall into either category. Entries in the flow zone association column in parentheses indicate that too few populations were found to conduct statistical analyses, but that the distribution of factors suggests that the the stated association (either YES or NO) is valid.

Table 6: Factors Affecting the SIZE of Weed Populations

		Flow-	Live-											Relation to Reference	
Species	Alluvial	zone	stock	Mining	Fire	Road	Rec.	Trail	Ind.	Ag.	Res.	ORV	Other	Line	Reach
Aegilops cylindrica				J											
Agropyron repens															
Ambrosia artemisiifolia															Oxbow
Amorpha fruticosa		ХХ	XX					XX		ΧХ					
Cardaria draba														crosses	
Centaurea diffusa															
Chondrilla juncea														crosses	
Cirsium arvense															
Cirsium vulgare														crosses	Oxbow
						XX								crosses	Weiser
Conium maculatum															
Convolvulus arvensis								ХХ						crosses	
Crupina vulgaris															
Cuscuta sp.															
Cyperus esculentus															
Cynoglossum officinale					ХХ					XX		XX		crosses	Oxbow HC Res. Brownlee
Daucus carota															
Elaeagnus angustifolia															
Equisetum arvense															
Euphorbia esula															
Hypericum perforatum														crosses	Downstream
Kochia scoparia															
Lepidium latifolium														crosses above	Weiser
Linaria dalmatica															
Lythrum salicaria															
Onopordum acanthium		ХХ		XX										crosses	Weiser
Phalaris arundinacea										ΧХ			00		Weiser
Polygonum cuspidatum															
Potentilla recta					1				1						

Species	Alluvial	Flow- zone	Live- stock	Mining	Fire	Road	Rec.	Trail	Ind.	Ag.	Res.	ORV	Other	Relation to Reference Line	Reach
Salvia aethiopis															
Taeniatherum caput-		00											00	crosses	Oxbow
medusae															Brownlee
<i>Tamarix</i> sp.															
Tribulus terrestris	00				XX									crosses	

XX = significant positive effect. OO = significant negative effect. In the "Reach" and "Proximity" columns, the reaches, or elevational categories are shown when the effect is significant. The category in which populations of the weed is largest is shown first, and the smallest is shown last. Categories into which no populations of a species fell are not shown.

Table 7: Summary of Noxious Weed Findings

Total Number of Populations Found:	1,905 (32 differe	nt species)
Number of Units with at Least One Weed	Population :	397 (or 98% of 405 units surveyed)

Average Number of Different Weed Species Per Unit

Hells Canyon Downstream reach (126 total units surveyed)	2.4 spp./unit
Hells Canyon Reservoir reach (54 total units surveyed)	5.7 spp./unit
Oxbow Reservoir reach (26 total units surveyed)	8.4 spp./unit
Brownlee Reservoir reach (166 total units surveyed)	4.4 spp./unit
Weiser reach (33 total units surveyed)	6.7 spp./unit
All reaches (405 total units surveyed)	4.4 spp./unit

Species Which Show a Significant (*) or Suggested Association with Flow zone Areas

- * Amorpha fruticosa (false indigo) Cyperus esculentus (yellow nut sedge) Equisetum arvense (common horsetail)
- * *Lepidium latifolium* (common pepperweed) *Lythrum salicaria* (purple loosestrife)
- * Phalaris arundinacea (reed canarygrass)
- * Tamarix sp. (tamarisk)

Species Which Show a Significant (*) or Suggested Association with Non-Flow zone Areas

- Aegilops cylindrica (jointed goat grass)
- * Cirsium vulgare (bull thistle)
- * Cynoglossum officinale (common houndstounge) Kochia scoparia (kochia)
- * Onopordum acanthium (Scotch thistle) Potentilla recta (erect cinquefoil) Salvia aethiopis (Mediterranian sage)
- * Taeniatherum caput-medusae (medusahead wildrye)

Species Which Show a Significant Positive (+) or Negative (-) Association with a Particular Disturbance Type

flow zone (+); recreation (+) flow zone (-) fire (+) flow zone (-); road (-) fire (+); recreation (+) flow zone (+) flow zone (+) flow zone (-); livestock (+) livestock (-); fire (-); road (+); recreation (-)

Significant associations are based on multiple regression analysis. Suggested associations are based on the distribution of predictor variables for a particular species compared to the average distribution across all species.

SPECIE	S THAT WERE THE FOCU	S OF THIS INVESTIGATION	
Name	Status	Habitat	ID Period
Allium geyeri var. geyeri	ONHP: 2 USFS: S BLM: S	Low meadows; riparian zones; basaltic shelves; vernally wet scabs	April-June
Cyperus schweinitzii	ONHP: 2	Sandy places (wet or dry); in valleys and lowlands	June-Aug.
Leptodactylon pungens ssp. hazeliae	Federal: SOC Idaho CDC: G5/T1 ONHP: 1 ODA: C USFS: S BLM: S	Rock outcrops and talus slopes	April-June
Mimulus hymenophyllus	Federal: SOC Idaho CDC: G1/S1 ONHP: 1 ODA: C USFS: S	Moist cracks in basalt cliffs; steep canyon walls	April-Aug.
Mimulus patulus	Federal: SOC Idaho CDC: G2Q/S1 ONHP: 4 ODA: LT USFS: S	Damp ground; wet cliffs; roadcuts.	May-Aug.
<i>Mimulus washingtonensis</i> ssp. <i>ampliatus = M.</i> <i>ampliatus</i>	Idaho CDC: G1/S1 BLM: S	Vernal seeps in FEID/POSE grasslands; rock crevices; seeps along streams	June-July
Spiranthes diluvialis	Federal: LT Idaho CDC: G2/S?	Springs; wet meadows; riparian zones	AugSept.
Teucrium canadense var. occidentale	Idaho CDC: G5/T4/S1 BLM: S	Wet meadows and riparian zones.	Late July- Aug.
SPECIES FOR WHIC	CH DATA WERE COLLEC	TED IF ENCOUNTERED INCIDENT	ALLY
Bolandra oregana	BLM: S ONHP: 4 ODA:C USFS: S	Moist rocky seeps; springs; waterfalls; wet road banks	May-June
Carex backii	ONHP: 2	Moist woods or thickets	June-Aug.
Carex hystricina	ONHP: 2	Wet ground near streams	June-Aug.
Cicuta bulbifera	Idaho CDC: G5/S2 ONHP: 2X BLM: S USFS: S	Wet places or standing water	July-Aug.

Table 8: Plant Species of Concern for the Rare Plant Investigation

Name	Status	Habitat	ID Period
Epipactis gigantea	Idaho CDC: G4/S3 BLM: S USFS: S	Streambanks; lakes; springs	July-Aug.
Lobaria scrobiculata		Tree bases; mossy rocks; soil	May-Sept.
Myriophyllum sibiricum	ONHP: 3	Ponds; ditches; streams; lakes	June-Sept.
Trifolium douglasii	ONHP: 1	Meadows and streambanks	June-Sept.

Federal Ranking:

- LE = Listed Endangered. Taxa in danger of extinction throughout all or a significant portion of their range.
- LT = Listed Threatened. Taxa likely to be classified as Endangered within the foreseeable future throughout all or a significant portion of their range.
- PE = Proposed Endangered. Taxa proposed to be listed as Endangered (formal rulemaking in progress).
- PT = Proposed Threatened. Taxa proposed to be listed as Threatened (formal rulemaking in progress).
- SC = Species of Concern. Available information supports tracking the status and threats to species because of one or more of the following factors: negative population trends have been documented; habitat is declining or threats to the habitat are known; subpopulations or closely related taxa have been documented to be declining; competition or genetic implications from introduction/stocking of exotic species; identified as a species of concern by agencies or professional societies; or in combination with any of the other criteria, information is needed on status or threats to the species

Idaho CDC and ONHP Ranking Categories:

- G = Global rank indicator; denotes rank based on rangewide status.
- T = Trinomial rank indicator; denotes rangewide status of infraspecific taxa.
- S = State rank indicator; denotes rank based on status within Idaho.
- 1 = Critically imperiled because of extreme rarity or because some factor of its biology makes it especially vulnerable to extinction (typically 5 or fewer occurrences).
- 2 = Imperiled because of rarity or because other factors demonstrably make it very vulnerable to extinction (typically 6 to 20 occurrences).
- 3 = Rare or uncommon but not imperiled (typically 21 to100 occurrences).
- 4 = Not rare and apparently secure, but with cause for long-term concern (usually more than 100 occurrences).
- 5 = Demonstrably widespread, abundant, and secure.
- E = Exotic or introduced.
- U = Unknown.
- H = Historical occurrence (i.e., formerly part of the native biota with the implied expectation that it might be rediscovered).
- X = Presumed extinct or extirpated.
- Q = Indicates uncertainty about taxonomic status.
- ? = Not yet ranked.

ODA (Oregon Department of Agriculture) Ranking

- LE = Listed Endangered. Endangered species are any native plant species determined by the director of the ODA to be in danger of extinction throughout all or any significant portion of its range.
- LT = Listed Threatened. Threatened species are any native plant species the director determines is likely to become endangered within the foreseeable future throughout all or any significant portion of its range.
- C = Candidate. Candidate species are any plant species designated for study by the director whose numbers are believed low or declining, or whose habitat is sufficiently threatened and declining in quantity and quality, so as to potentially qualify for listing as a threatened or endangered species in the foreseeable future.

BLM and USFS Ranking:

S = Sensitive Species. Both the BLM and the USFS maintain a list of sensitive species which are thought to be in need of protection on agency lands

Species	Total Pops.	Individuals per Pop.	Gross Area m ²	Net Area m ²	Located in Which Reach(es)
<i>Bolandra oregana</i> (Oregon bolandra)	8	avg: 300 min: 3 max: 1,000	avg: 300 min: 0.5 max: 1000	avg: 6 min: 0.3 max: 20	Hells Canyon Downstream; Hells Canyon Reservoir; Oxbow Reservoir
<i>Carex hystricina</i> (porcupine sedge)	10	avg: 30 min: 1 max: 100	avg: 300 min: 0.2 max: 2000	avg: 7 min: 0.2 max: 20	Hells Canyon Downstream; Oxbow Reservoir
<i>Cyperus schweinitzii</i> (Schweinitz flatsedge)	21	avg: 2,000 min: 20 max: 10,000	avg: 7,000 min: 40 max: 50,000	avg: 200 min: 2 max: 1,000	Hells Canyon Downstream
Leptodactylon pungens ssp. hazeliae (Hazel's prickly phlox)	6	avg: 20 min: 3 max: 50	avg: 3,000 min: 0.3 max: 10,000	avg: 10 min: 0.3 max: 50	Hells Canyon Downstream; Hells Canyon Reservoir
<i>Mimulus patulus</i> (Stalk-leaved monkey-flower)	1	50	9	0.5	Oxbow Reservoir
<i>Teucrium canadense</i> var. <i>occidentale</i> (American wood sage)	1	14	6	1	Hells Canyon Downstream

Table 9: Rare Plant Species Located

Individuals per Pop. = total number of individuals per population (average/minimum/maximum); Gross Area = area per population, including interstitial spaces, (average/minimum/maximum); Net Area = area per population, excluding interstitial spaces not occupied by individuals of the rare species, (average/minimum/maximum). Figures are given to 1 significant digit for Individuals per Pop., Gross Area, and Net Area.

Crassica	Cita Number	Data	Side of	Gross	ابتر والتربية وا	Elev.	Dist.	Disturbance Turner	Associated on a
Species	Site Number	Date	River	Area	Individ.	max/min	max/min	Disturbance Types	Associated spp.
Bolandra oregana	SML07059903	06-May-99	Oregon	120	1,100	99/99	35/25	Rec(3); Road(2)	MOPE, GAAP, COMA4, MOSS
	PGW15059903	15-May-99	Idaho	1,000	500	99/7	30/3	Undisturbed(5)	MIGU, ROCK
	PGW15059901	15-May-99	Idaho	400	85	99/9	8/3	Undisturbed(5)	MIGU, ROCK
	RKM16059902	16-May-99	Oregon	1,000	200	99/99	60/45	Undisturbed(5)	MIGU, ROCK
	RKM16059901	16-May-99	Oregon	200	200	99/99	30/25	Undisturbed(5)	MIGU, ARLU, RHRA, ROCK
	MEV03069901	03-Jun-99	Oregon	45	24	99/99	99/99	Alluvial(2)	CACU,CERE,PHLE,MIGU,RHRA
	SML04069902	04-Jun-99	Oregon	0.5	3	99/99	45/45	Alluvial(5); Other(5); Livestock(2); Fire(2); Road(2); Rec(2); ORV(2)	SALIX, RHRA
	SML04069903	04-Jun-99	Oregon	2	15	99/99	25/25	Road(5); Alluvial(2); Rec(2)	BROMU,CLCO,MIGU, ROWO,PRVI
Carex hystricina	BJD060998101	06-Sep-98	Oregon	2,000	50	99/99	99/99	Alluvial(4); Livestock(2); Fire(2)	RONA, LASE, MEAL, URDI, MEOF
	RKM07059904	07-May-99	Idaho	15	100	99/99	45/40	Livestock(4); Alluvial(3); Road(2)	RUCR, MIGU, CAHY
	RKM19059901	19-May-99	Oregon	50	40	99/99	45/30	Alluvial(3); Livestock(2); Fire(2); Rec(2)	MIGU, DISY, RUCR
	RKM20059901	20-May-99	Oregon	10	25	99/99	30/27	Livestock(4); Trail(4); Alluvial(3); Rec(3); Fire(2)	CAHY, MIGU, DISY
	LLM01069901	01-Jun-99	Oregon	4	3	-1/-2	-0.1/-1.5	Flow zone(5)	
	SML04069901	04-Jun-99	Oregon	20	30	99/99	45/40	Alluvial(5); Livestock(5); Other(5); Fire(2); Road(2); Rec(2); ORV(2)	RHRA, SOLID, VERON, MESA
	MEV04069901	04-Jun-99	Oregon	20	24	99/99	50/40	Alluvial(3); Other(2)	CAHY, CACU, RHRA, MIGU
	LLM04069901	04-Jun-99	Idaho	800	25	-1/-3	-0.1/-1.5	Flow zone(5); Alluvial(3); Livestock(2); Rec(2)	BARE, IRPS, CAVU
	LLM04069902	04-Jun-99	Idaho	0.25	1	-3/-3	-1/-1	Flow zone(5); Livestock(2)	RHRA, IRPS, BARE, MESA
	LLM04069903	04-Jun-99	Idaho	0.25	1	-3/-3	-0.75/ -0.75	Flow zone(5); Livestock(3); Rec(2)	BARE, MESA
Cyperus schweinitzii	RKM030998101	03-Sep-98	Oregon	100	150	99/99	20/15	Fire(2); Rec(2)	BRTE, VETH, LASE
	RSK030998101	03-Sep-98	Idaho	45,000	10,000	99/5	99/2	Livestock(3); Fire(3); Alluvial(2); Rec(2); Trail(2)	CERE, SPCR, ARLO, BRCO, BRTE
	BJD030998102	03-Sep-98	Oregon	250	250	99/99	30/25	Livestock(2); Fire(2); Rec(2)	LASE, BRTE
	RSK030998102	03-Sep-98	Idaho	100	750	99/99	35/24	Fire(3); Alluvial(2); Livestock(2); Rec(2)	BRTE, CERE, SPCR

Species	Site Number	Date	Side of River	Gross Area	Individ.	Elev. max/min	Dist. max/min	Disturbance Types	Associated spp.
	BJD030998101			250	150	-6/-8	-3/-8	Alluvial(4); Flow zone(4);	Associated spp.
Cyperus schweinitzii	R1D030448101	03-Sep-98	Oregon	250	150	-0/-8	-3/-8	Rec(3); Livestock(2)	
(continued)	BJD040998102	04-Sep-98	Orogon	3,000	600	99/-3	30/-2	Livestock(2); Fire(2); Rec(2);	VETH, VEBL, AGSP
			Oregon					Trail(2)	
	RSK040998104	04-Sep-98	Oregon	16,000	4,000	99/1	20/0.5	Livestock(3); Fire(3); Alluvial(2); Flow zone(2); Rec(2)	CERE, SPCR, ARLO, BRCO
	RSK040998102	04-Sep-98	Oregon	800	450	99/1	21/0.2	Livestock(3); Fire(3); Rec(3); Alluvial(2); Flow zone(2); Trail(2)	CERE, AGSP, BRTE
	RSK040998103	04-Sep-98	Idaho	2,000	1,000	99/-2	40/-0.5	Livestock(3); Fire(3); Alluvial(2); Flow zone(2); Rec(2)	CERE, AGSP, SPCR, BRTE
	BJD040998101	04-Sep-98	Oregon	10,000	1,000	99/2	40/1.5	Rec(3); Livestock(2); Fire(2); Trail(2)	ARLO, AGSP, MEAL
	RSK040998101	04-Sep-98	Oregon	2,000	1,000	99/4	35/2.5	Alluvial(3); Livestock(3); Fire(3); Rec(3); Trail(2)	CERE, BRTE, AGSP
	RKM100998102	10-Sep-98	Oregon	5,000	4,000	99/2	30/2	Fire(4); Livestock(3); Rec(3); Trail(3)	ARLO, MEAL, VETH
	RKM100998101	10-Sep-98	Oregon	4,000	4,000	99/99	40/7	Fire(4); Livestock(3); Rec(3); Trail(3)	SEVI, ARLO
	BJD110998101	11-Sep-98	Idaho	50,000	8,000	99/2	99/1	Flow zone(2); Livestock(2); Fire(2); Rec(2)	SPCR, ARLO, AGSP
	RKM110998101	11-Sep-98	Oregon	3,000	2,500	99/10	25/5	Fire(3); Rec(2)	AGSP, VETH, ARLO, SEVI
	RKM110998102	11-Sep-98	Oregon	45	30	99/4	20/3	Livestock(3); Rec(3); Trail(3); Fire(2)	MEAL
	RKM110998103	11-Sep-98	Oregon	8,000	3,000	99/3	99/3	Livestock(3); Rec(3); Trail(3); Fire(2)	AGSP, BRST, BRTE, PASC, PACA, SEVI
	RKM120998101	12-Sep-98	Idaho	2,000	2,000	99/99	35/5	Rec(4); Livestock(3); Fire(3); Road(2)	ARLO, SEVI, VEBL
	RKM120998102	12-Sep-98	Idaho	100	17	5/-2	3/-1	Alluvial(3); Flow zone(3); Rec(3)	BARE
	RKM130998101	13-Sep-98	Oregon	3,500	7,000	99/99	40/7	Rec(3); Livestock(2); Fire(2)	ARLO, AGSP, PASC, MEAL
	BJD130998101	13-Sep-98	Oregon	500	800	99/99	40/20	Livestock(2); Fire(2); Rec(2)	VETH, PASC, MEAL
Species	Site Number	Date	Side of River	Gross Area	Individ.	Elev. max/min	Dist. max/min	Disturbance Types	Associated spp.
--	--------------	-----------	------------------	---------------	----------	------------------	------------------	---	-----------------------------------
<i>Leptodactylon pungens</i> ssp. <i>hazeliae</i>	RKM03059901	03-May-99	Oregon	60	3	99/99	30/30	Fire(2)	ROCK, CERE, AGSP, GLNE
	CWB06059901	06-May-99	Oregon	8,000	48	99/2	50/0	Undisturbed(5)	ROCK
	CWB06059902	06-May-99	Oregon	100	5	99/99	9/7	Undisturbed(5)	ROCK
	CWB06059903	06-May-99	Oregon	200	24	99/99	50/45	Rec(2)	ROCK
	SML07059902	07-May-99	Oregon	3,000	40	99/2	3/0.5	Flow zone(2); Residential(2)	ROCK, CLEMA, CEANO, CERE, BRTE
	SML07059901	07-May-99	Idaho	150	10	99/2	5/0.1	Flow zone(2)	ELEMU, CEANO, LOMAT
Mimulus patulus	SML03059905	03-May-99	Oregon	9	50	99/99	24/20	Road(5); Alluvial(2); Livestock(2); Rec(2)	ARLU, TRIFO, BRTE, POBU, HEAN
<i>Teucrium canadense</i> var. <i>occidentale</i>	BJD100998101	10-Sep-98	Oregon	6	14	1/-5	0.1/-2	Flow zone(4); Rec(2)	SPPE

Date = date the population was recorded; **Gross Area** = total area of the population (including interstitial spaces); **Individ.** = total number of individuals (estimated or actual) in the population); **Elev. (max/min)** = maximum and minimum elevations, in 15 cm height classes, above or below the MHWM (99 or -99 is entered where the height class is above or below 20); **Dist. (max/min)** = maximum and minimum horizontal distances, in meters, from the MHWM (99 or -99 is entered where the distances are greater than 50 m; **Disturbance Types** = All recorded disturbances for the population (number in parenthesis is the level of disturbance); **Associated spp.** = the most common associated species.

Figures

Г

Common Name:			IPCo Office Use			
Sci. Name:		Sp. Code:	SITENO:	SITENO:		
Site Mapped: 🗌	Tentative Site Number:		On Final Maps:	On Final Maps:		
	<u>``</u> ``		.			
Date:	Time:	Photo Roll	and No.:			
	1					
GPS File:	UTM Coord.:	N	E	Elev.		
	ESES SWWNW MaxEl_		Max Distm Min	Distm		
Distance From Mł	HWM to Current WSE:	m				
Location:	- 81					
Habitat:	1111-1-1-					
	(= 194-9					
Physiography:	Moisture:	Disturb	ance Type	Dist. Level		
🗌 Wash	Inundated (hydric)	Alluvial	Trail	5=Extreme 4=Heavy		
Drainage Ridge	☐ Inundated (hydric) ☐ Saturated (wet/mesic) ☐ Moist (mesic)	Flow Zone	Industrial	3=Moderate		
Flats	Dry-Mesic	Livestock	Agricultural Residential	2=Slight		
Slope	Dry (xeric)	Fire	ORV Use	1=None		
		Road Corrido	rUndisturbed Other			
Surface Substrate	(%):fine sediment			bedrock		
	als in pop.:act					
	d? Genets (genetically disting			plant)		
Phenology (% of p	oop.):Vegetative	Flower	FruitDo	rmant		
Pop. age class (%):SeedlingsImmat	ureMature	SenescentUn	known		
Gross pop. area _	m² Net pop. area: _	m² Vigor	: Excellent Good Fa	air Poor		
	TreesShrubs					
Cover Type:	Plant Association:					
Noxious Plant Do	minance Rating: 0 1 2 3 4	5				
Apparent trend of	population: Declining Stable	Increasing Unknown				
Abundant	Species Cor	nmon Species	Rare Spec	cies		
Comments:	1					

Figure 22: Photo of Quackgrass in Unit 181-1E

Figure 23: Photo of False Indigo in Unit 108-3E

Figure 24: Photo of Poison Hemlock in Unit 081-4E

Figure 25: Photo of Dalmatian Toadflax in Unit 090-3E

Figure 26: Photo of Scotch Thistle in Unit 106-1E

Figure 27: Photo of Reed Canarygrass in Unit 103-3W

RARE PLAN	OBSERVATION	NFORM			
Sci. Name: Sit	e Number:	Date:			
Recorder(s):					
Address:					
Elevations:m (low) to:m (l					
Quad Name:		Slope (degrees)):		
GPS File: UTM Coord.:					
T: R: S: ¼ of the					
Asp: Flat N NE E SE S SW W NW Max E	I Min EI	Max Distm	Min Distm		
Distance From MHWM to Current WSE:	m County:				
New Site? EO#: Survey inte	nsity (circle one)? The	orough or Cursory			
Location:					
Habitat:					
Physiography: Moisture:		Disturbance Type	turbance Type		
	Alluvial	Road Corridor			
🔲 Drainage 👘 🗌 Saturated (wet/mesic)	Flow Zone	Recreation	ORV Use		
Ridge Moist (mesic) Flats Dry-Mesic		Trail Industrial	Undisturbed Other		
Slope Dry (xeric)		Agricultural	Other		
Surface Substrate (%):fine sediment	coarse w/fines	coarse w/o fines	bedrock		
Total # of individuals in pop.:a	ctual	estimated			
What was counted? Genets (genetically distinguished)			nal plant)		
Phenology (% of pop.):Vegetative	•	•	• •		
Pop. age class (%):SeedlingsImma					
Gross pop. area m ² Net pop. area:					
Percent Cover: Trees Shrubs					
Cover Type: Plant Association:					
Pop. Trend: Declining Stable Increasing Unk		ite Quality: Excellent			
	ommon Species	-	on Species		
•	•		n opecies		
	· ·				
Threats:					
How was ID made?					
Other knowledgeable individuals:					
Photo Roll and No.: Collection					
Comments:					

Figure 28: Rare Plant Data Collection Form

Figure 33: Photo of Schweinitz Flatsedge

Figure 34: Photo of Schweinitz Flatsedge Habitat

Figure 35: Photo of Hazel's Prickly Phlox

Figure 36: Photo of Hazel's Prickly Phlox Habitat

Figure 37: Photo of Stalk-Leaved Monkey Flower Habitat

Figure 38: Photo of American Wood Sage

Figure 39: Photo of American Wood Sage Habitat

Figure 40: Photo of Oregon Bolandra

Figure 41: Photo of Oregon Bolandra Habitat

Figure 42: Photo of Porcupine Sedge

Figure 43: Photo of Porcupine Sedge Habitat

Appendices

Appendix 1: Cumulative Plant Species Lists

Vascular Plant Species Hells Canyon Rare Plant and Weed Survey - Hells Canyon Downstream Reach Survey Date(s): 8/31/98 through 5/30/99

Botanical nomenclature follows "Flora of the Pacifc Northwest" (Hitchcock and Cronquist 1973) and "The Jepson Manual" (Hickman 1993)

Family	Scientific Name	Common Name
AIZOACEAE	Mollugo verticillata	carpetweed
	monago vententata	carpetweed
AMARANTHACEAE	Amaranthus albus	tumbleweed
ANACARDIACEAE	Rhus glabra	smooth sumac
	Rhus radicans	poison ivy
APIACEAE	* Anthriscus scandicina	bur chervil
	Cicuta douglasii	western water-hemlock
	Cicuta sp.	water hemlock
	* Conium maculatum	poison-hemlock
	Ligusticum filicinum	fern-leaf lovage
	Lomatium dissectum	fern-leaved lomatium
APOCYNACEAE	Apocynum cannabinum	common dogbane
ASCLEPIADACEAE	Asclepias speciosa	showy milkweed
ASTERACEAE	Achillea millefolium	common yarrow
	Ambrosia acanthicarpa	annual burweed
	Ambrosia artemisiifolia	annual ragweed
	Antennaria alpina var. media	alpine pussy-toes
	Artemisia ludoviciana	prairie sage
	Balsamorhiza sagittata	arrow-leaf balsamroot
	* Chondrilla juncea	rush skeleton-weed
	* Cichorium intybus	wild succory
	* Cirsium arvense	Canada thistle
	Cirsium utahense	Utah thistle
	* Cirsium vulgare	bull thistle
	* Conyza canadensis	horseweed
	* Crupina vulgaris	crupina
	Erigeron compositus	compound-leaved fleabane
	Erigeron subtrinervis var. conspicuus	three-veined fleabane
	Gnaphalium palustre	lowland cudweed

ASTERACEAE	Grindelia squarrosa	resin-weed
	Haplopappus resinosus	gnarled goldenweed
	Haplopappus sp.	goldenweed
	Helianthus annuus	common sunflower
	* Lactuca serriola	prickly lettuce
	* Onopordum acanthium	scotch thistle
	Solidago canadensis	Canadian goldenrod
	Solidago occidentalis	western goldenrod
	Stephanomeria tenuifolia	narrow-leaved skeletonweed
	* Taraxacum officinale	common dandelion
	* Tragopogon dubius	salsify
	Xanthium strumarium	common cocklebur
BETULACEAE	Alnus incana var. occidentalis	mountain alder
	Alnus rhombifolia	white alder
	Alnus sp.	alder
	-	
BORAGINACEAE	Amsinckia retrorsa	rigid fiddleneck
	Amsinckia sp.	fiddleneck
	* Asperugo procumbens	madwort
	* Cynoglossum officinale	common hounds-tongue
BRASSICACEAE	Arabis hirsuta	hairy rockcress
	Arabis microphylla	littleleaf rockcress
	Cardaria draba	heart-podded hoarycress
	Descurainia pinnata	western tansymustard
	* Lepidium campestre	fieldpeppergrass
	* Lepidium perfoliatum	clasping peppergrass
	* Sisymbrium altissimum	Jim Hill mustard
	Stanleya pinnata	bushy stanleya
CACTACEAE	Opuntia polyacantha	Prickly-pear cactus
CAPRIFOLIACEAE	Sambucus cerulea	blue elderberry
	Symphoricarpos sp.	snowberry
	Symphonical posisp.	Showeeny
CARYOPHYLLACEAE	* Arenaria serpyllifolia	thyme-leaf sandwort
	* Lychnis alba	white campion
	* Lychnis coronaria	rose campion
	* Saponaria officinalis	bouncing bett
	Stellaria jamesiana	sticky chickweed
	Steven w Junestand	sticky chickwood
CELASTRACEAE	Glossopetalon nevadense var. stipuliferum	spiny green-bush
	• 1 V	
CHENOPODIACEAE	Chenopodium album	lamb's quarters
		•

CHENOPODIACEAE	* Salsola kali	Russian thistle
CONVOLVULACEAE	* Convolvulus arvensis	field bindweed
CORNACEAE	Cornus stolonifera	red-osier dogwood
CRASSULACEAE	Sedum lanceolatum	lance-leaved stonecrop
CYPERACEAE	Carex hystricina Cyperus esculentus Cyperus schweinitzii Cyperus strigosus	porcupine sedge yellow nut-grass Schweinitz flatsedge straw-colored flatsedge
DIPSACACEAE	* Dipsacus sylvestris	teasel
EQUISETACEAE	Equisetum arvense Equisetum laevigatum	common horsetail smooth scouring-rush
EUPHORBIACEAE	Euphorbia glyptosperma Euphorbia serpyllifolia	corrugate-seeded spurge thyme-leaf spurge
FABACEAE	 * Amorpha fruticosa Astragalus purshii Glycyrrhiza lepidota Lotus purshianus * Medicago lupulina * Medicago sativa * Melilotus alba * Melilotus officinalis Vicia americana 	false indigo woolly-pod milk-vetch licorice Spanish clover hop clover alfalfa white sweet-clover common yellow sweet-clover American vetch
GERANIACEAE	* Erodium cicutarium Geranium bicknellii	filaree Bicknell's geranium
GROSSULARIACEAE	Ribes velutinum var. gooddingii	Goodding's gooseberry
HYDRANGEACEAE	Philadelphus lewisii	mockorange
HYDROPHYLLACEAE	Phacelia heterophylla Phacelia linearis	varileaf phacelia threadleaf phacelia
HYPERICACEAE	* Hypericum perforatum	common St. Johnswort
IRIDACEAE	* Iris pseudacorus	yellow flag

JUGLANDACEAE	* Juglans nigra	black walnut
LAMIACEAE	Agastache urticifolia var. urticifolia * Marrubium vulgare Mentha arvensis * Nepeta cataria Prunella vulgaris var. lanceolata Scutellaria angustifolia Teucrium canadense var. occidentale	nettle leaved horse mint horehound field mint catnip self-heal narrow-leaved skullcap American wood sage
LILIACEAE	Allium acuminatum Brodiaea douglasii Calochortus macrocarpus Zigadenus venenosus	tapertip onion wild hyacinth sagebrush mariposa meadow death camas
LOASACEAE	Mentzelia laevicaulis	blazing-star mentzelia
MALVACEAE	Malva neglecta	dwarf mallow
MORACEAE	* Morus alba	white mulberry
OLEACEAE	* Fraxinus sp.	ash
ONAGRACEAE	Epilobium paniculatum Gaura parviflora Oenothera strigosa	tall annual willow-weed small-flowered gaura common evening primrose
PINACEAE	Pinus ponderosa	ponderosa pine
PLANTAGINACEAE	* Plantago lanceolata Plantago patagonica	ribwort Indian-wheat
POACEAE	 * Agropyron repens Agropyron spicatum var. spicatum Aristida longiseta * Bromus brizaeformis * Bromus commutatus * Bromus japonicus * Bromus sterilis * Bromus tectorum Cenchrus longispinus * Dactylis glomerata Deschampsia danthonioides 	quackgrass blue-bunch wheatgrass red threeawn rattlesnake brome hairy chess Japanese brome barren brome cheatgrass bur-grass orchard grass annual hairgrass

POACEAE	* Digitaria sp.	crabgrass
I ONCEAL	* Echinochloa crusgalli	large barnyard-grass
	Elymus cinereus	giant wildrye
	Elymus glaucus	western rye-grass
	* Eragrostis cilianensis	stinkgrass
	Festuca idahoensis var. idahoensis	Idaho fescue
	Hordeum jubatum	foxtail barley
	Panicum capillare	common witchgrass
	Panicum scribnerianum	Scribner witchgrass
	Phalaris arundinacea	reed canarygrass
	* Poa bulbosa	bulbous bluegrass
	Poa pratensis	Kentucky bluegrass
	Poa secunda	Sandberg's bluegrass
	* Setaria viridis	green bristlegrass
		prairie cordgrass
	Spartina pectinata	sand dropseed
	Sporobolus cryptandrus	sand dropseed
POLEMONIACEAE	Collomia linearis	narrow-leaf collomia
	Gilia aggregata var. aggregata	skyrocket; scarlet gilia
	Leptodactylon pungens ssp. hazeliae	Hazel's prickly phlox
	Phlox colubrina	Snake River phlox
POLYGONACEAE	Eriogonum niveum	snow buckwheat
	Eriogonum ovalifolium	oval-leaved eriogonum
	Polygonum coccineum	water smartweed
	* Polygonum convolvulus	climbing bindweed
	Polygonum sp.	knotweed
	* Rumex crispus	curly dock
POLYPODIACEAE	Cystopteris fragilis	bladder-fern
	Mandana and Inda	
PORTULACACEAE	Montia perfoliata * Portulaca oleracea	miner's lettuce
	* Portulaca oleracea	common purslane
RANUNCULACEAE	Clematis columbiana var. columbiana	Columbia clematis
	Clematis ligusticifolia	western clematis
RHAMNACEAE	Rhamnus purshiana	cascara
ROSACEAE	Amelanchier alnifolia	western service berry
	Holodiscus discolor	oceanspray
	Potentilla concinna	early cinquefoil
	* Potentilla recta	erect cinquefoil
	Prunus virginiana	chokecherry
	Rubus bartonianus	Bartonberry

ROSACEAE	* Rubus discolor Rubus sp.	Himalayan blackberry bramble
RUBIACEAE	Galium triflorum	sweet-scented bedstraw
SALICACEAE	Salix exigua	river-bank willow
SAXIFRAGACEAE	Bolandra oregana Lithophragma parviflora	bolandra prairiestar
	Europhragma parvijiora	prantesta
SCROPHULARIACEAE	* Linaria dalmatica	dalmatian toadflax
	Mimulus guttatus	yellow monkey-flower
	Penstemon triphyllus	whorled penstemon
	Tonella floribunda	large-flowered tonella
	* Verbascum blattaria	moth mullein
	* Verbascum thapsus	common mullein
	* Veronica arvensis	common speedwell
SELAGINELLACEAE	Selaginella sp.	lesser-clubmoss
SOLANACEAE	Physalis longifolia	long-leaved ground-cherry
	* Solanum dulcamara	bittersweet
ULMACEAE	Celtis reticulata	hackberry
URTICACEAE	Urtica dioica	stinging nettle
VALERIANACEAE	Plectritis macrocera	long-horn plectritis
VERBENACEAE	Verbena bracteata	bracted verbena
ZYGOPHYLLACEAE	* Tribulus terrestris	puncture vine

Vascular Plant Species Hells Canyon Rare Plant and Weed Survey - Hells Canyon Reservoir Reach Survey Date(s): 8/17/98 through 8/25/98

Botanical nomenclature follows "Flora of the Pacifc Northwest" (Hitchcock and Cronquist 1973) and "The Jepson Manual" (Hickman 1993)

Family	Scientific Name	Common Name
ACERACEAE	* Acer negundo	box-elder
AIZOACEAE	Mollugo verticillata	carpetweed
ANACARDIACEAE	Rhus glabra	smooth sumac
ANACANDIACEAE	Rhus galora Rhus radicans	poison ivy
	Knus ruaicans	poison ivy
APIACEAE	* Anthriscus scandicina	bur chervil
	* Conium maculatum	poison-hemlock
	Lomatium dissectum	fern-leaved lomatium
APOCYNACEAE	Apocynum cannabinum	common dogbane
ASCLEPIADACEAE	Asclepias speciosa	showy milkweed
ASTERACEAE	Achillea millefolium	common yarrow
	Ambrosia acanthicarpa	annual burweed
	Ambrosia artemisiifolia	annual ragweed
	Anaphalis margaritacea	common pearly-everlasting
	Artemisia arbuscula	low sage
	Artemisia dracunculus var. dracunculus	tarragon
	Artemisia ludoviciana	prairie sage
	Balsamorhiza sagittata	arrow-leaf balsamroot
	Bidens vulgata	tall beggar-ticks
	* Centaurea diffusa	diffuse knapweed
	Chrysothamnus nauseosus	gray rabbit-brush
	* Cichorium intybus	wild succory
	* Cirsium arvense	Canada thistle
	Cirsium utahense	Utah thistle
	* Cirsium vulgare	bull thistle
	* Conyza canadensis	horseweed
	Erigeron strigosus	daisy fleabane
	Eriophyllum lanatum	common eriophyllum
	Gnaphalium palustre	lowland cudweed

ASTERACEAE	Grindelia squarrosa	resin-weed
	Gutierrezia sarothrae	broom snakeweed
	Helenium autumnale	sneezeweed
	Helianthus annuus	common sunflower
	* Lactuca serriola	prickly lettuce
		slender hareleaf
	Lagophylla ramosissima Maalaanada ay	
	Machaeranthera canescens	hoary aster
	* Onopordum acanthium	scotch thistle
	Solidago missouriensis	Missouri goldenrod
	Solidago occidentalis	western goldenrod
	* Sonchus oleraceus	common sow-thistle
	* Tragopogon dubius	salsify
	Xanthium strumarium	common cocklebur
BETULACEAE	Alnus incana var. occidentalis	mountain alder
	Alnus sinuata	Sitka alder
BORAGINACEAE	Amsinckia intermedia	ranchers fiddleneck
	* Cynoglossum officinale	common hounds-tongue
	Lithospermum ruderale	Columbia puccoon
	-	-
BRASSICACEAE	* Alyssum alyssoides	pale alyssum
	* Lepidium latifolium	pepperwort
	* Sisymbrium altissimum	Jim Hill mustard
	Thelypodium sp.	thelypody
CAPPARIDACEAE	Polanisia trachysperma	clammy-weed
CAPRIFOLIACEAE	Sambucus cerulea	blue elderberry
CAI MI OLIACLAL	Symphoricarpos sp.	snowberry
	Symphoticarpos sp.	showberry
CARYOPHYLLACEAE	* Lychnis alba	white campion
	* Saponaria officinalis	bouncing bett
	* Vaccaria segetalis	cowcockle
CELASTRACEAE	Glossopetalon nevadense var. stipuliferum	spiny green-bush
CHENOPODIACEAE	* Chenopodium botrys	Jerusalem oak
	* Salsola kali	Russian thistle
CONVOLVULACEAE	* Convolvulus arvensis	field bindweed
CORNACEAE	Cornus stolonifera	red-osier dogwood

CRASSULACEAE	Sedum lanceolatum	lance-leaved stonecrop
CUSCUTACEAE	Cuscuta sp.	dodder
CYPERACEAE	Carex hystricina Carex rostrata Carex vulpinoidea Cyperus strigosus Scirpus pallidus Scirpus validus	porcupine sedge beaked sedge fox sedge straw-colored flatsedge pale bulrush tule
DIPSACACEAE	* Dipsacus sylvestris	teasel
ELAEAGNACEAE	* Elaeagnus angustifolia	Russian olive
EUPHORBIACEAE	Eremocarpus setigerus Euphorbia glyptosperma	turkey-mullein corrugate-seeded spurge
FABACEAE	 * Amorpha fruticosa Glycyrrhiza lepidota Lotus purshianus * Medicago sativa * Melilotus alba * Melilotus officinalis * Robinia pseudo-acacia * Trifolium pratense 	false indigo licorice Spanish clover alfalfa white sweet-clover common yellow sweet-clover robinia red clover
GERANIACEAE	* Erodium cicutarium	filaree
GROSSULARIACEAE	Ribes aureum	golden currant
HYDRANGEACEAE	Philadelphus lewisii	mockorange
HYDROPHYLLACEAE	Phacelia hastata	silverleaf phacelia
HYPERICACEAE	* Hypericum perforatum	common St. Johnswort
IRIDACEAE	* Iris pseudacorus	yellow flag
JUGLANDACEAE	* Juglans nigra * Juglans regia	black walnut English walnut
JUNCACEAE	Juncus balticus Juncus tenuis	Baltic rush slender rush

JUNCACEAE	Juncus torreyi	Torry's rush
LAMIACEAE	Lycopus asper * Marrubium vulgare * Nepeta cataria Prunella vulgaris * Salvia aethiopis	rough bugleweed horehound catnip heal-all Mediterranean sage
LOASACEAE	Mentzelia laevicaulis	blazing-star mentzelia
LYTHRACEAE	Lythrum hyssopifolia * Lythrum salicaria	hyssop loosestrife purple loosestrife
MALVACEAE	Iliamna rivularis	streambank globemallow
MORACEAE	* Morus alba	white mulberry
OLEACEAE	* Fraxinus pennsylvanica	green ash
ONAGRACEAE	Epilobium paniculatum Epilobium watsonii Gaura parviflora Oenothera strigosa	tall annual willow-weed Watson's willow-weed small-flowered gaura common evening primrose
PINACEAE	Pinus ponderosa Pseudotsuga menziesii	ponderosa pine Douglas-fir
PLANTAGINACEAE	* Plantago lanceolata Plantago patagonica	ribwort Indian-wheat
POACEAE	 * Aegilops cylindrica * Agropyron cristatum * Agropyron intermedium * Agropyron repens * Agropyron sp. Agropyron spicatum var. spicatum * Bromus brizaeformis * Bromus commutatus * Bromus japonicus * Bromus sterilis * Bromus tectorum * Dactylis glomerata Deschampsia danthonioides * Echinochloa crusgalli * Eragrostis cilianensis 	jointed goatgrass crested wheatgrass intermediate wheatgrass quackgrass wheatgrass blue-bunch wheatgrass rattlesnake brome hairy chess Japanese brome barren brome cheatgrass orchard grass annual hairgrass large barnyard-grass stinkgrass

POACEAE	Hordeum jubatum	foxtail barley
I ONCEAL	Koeleria cristata	prairie junegrass
	Leersia oryzoides	cutgrass
	Panicum capillare	common witchgrass
	Phalaris arundinacea	reed canarygrass
	* Phleum pratense	timothy
	* Poa bulbosa	bulbous bluegrass
	Poa pratensis	Kentucky bluegrass
	Poa secunda	
		Sandberg's bluegrass
	* Polypogon monspeliensis	rabbitfoot polypogon
	Sitanion hystrix	bottlebrush squirreltail
	Sporobolus cryptandrus	sand dropseed
	Stipa sp.	needlegrass
	* Taeniatherum caput-medusae	medusahead wildrye
POLEMONIACEAE	Collomia linearis	narrow-leaf collomia
	Collomia sp.	collomia
	Leptodactylon pungens ssp. hazeliae	Hazel's prickly phlox
	F	n anth ann bu alamh a at
POLYGONACEAE	Eriogonum compositum	northern buckwheat
	Eriogonum heracleoides	Wyeth's buckwheat
	Eriogonum niveum	snow buckwheat
	Eriogonum strictum	strict buckwheat
	Eriogonum umbellatum	sulfur buckwheat
	Eriogonum vimineum	broom buckwheat
	Polygonum aviculare	doorweed
	* Polygonum convolvulus	climbing bindweed
	* Polygonum cuspidatum	Japanese knotweed
	Polygonum majus	wiry knotweed
	Polygonum persicaria	spotted ladysthumb
	Polygonum sp.	knotweed
	* Rumex acetosella	field sorrel
	* Rumex crispus	curly dock
	Rumex sp.	dock
POLYPODIACEAE	Cystopteris fragilis	bladder-fern
	Pteridium aquilinum var. pubescens	bracken
PORTULACACEAE	Montia perfoliata	miner's lettuce
	* Portulaca oleracea	common purslane
RANUNCULACEAE	Clematis ligusticifolia	western clematis
	Ranunculus sp.	buttercup
		hand hand h
RHAMNACEAE	Ceanothus sp.	buckbrush

RHAMNACEAE	Rhamnus purshiana	cascara
ROSACEAE	Amelanchier alnifolia Crataegus columbiana Crataegus douglasii var. douglasii Physocarpus malvaceus Potentilla glandulosa * Prunus armeniaca * Prunus cerasifera Prunus emarginata Prunus sp. Prunus virginiana Purshia tridentata Rosa nutkana Rosa woodsii * Rubus discolor Rubus leucodermis	western service berry Columbia hawthorn black hawthorn mallow ninebark sticky cinquefoil apricot cherry plum bittercherry cherry chokecherry bitter-brush Nootka rose Wood's rose Himalayan blackberry black raspberry
RUBIACEAE	Galium aparine var. echinospermum	bedstraw; goose-grass
SALICACEAE	Populus trichocarpa Salix exigua Salix sp.	black cottonwood river-bank willow willow
SANTALACEAE	Comandra umbellata	bastard toad flax
SAXIFRAGACEAE	Bolandra oregana Heuchera sp. Lithophragma bulbifera	bolandra alumroot bulbiferous fringecup
SCROPHULARIACEAE	* Linaria dalmatica Mimulus guttatus Penstemon deustus Penstemon triphyllus * Verbascum blattaria * Verbascum thapsus	dalmatian toadflax yellow monkey-flower hot-rock penstemon whorled penstemon moth mullein common mullein
SIMAROUBACEAE	* Ailanthus altissima	tree-of-heaven
SOLANACEAE	Physalis longifolia	long-leaved ground-cherry
ULMACEAE	Celtis reticulata * Ulmus sp.	hackberry elm
VERBENACEAE	Verbena bracteata	bracted verbena

Hells Canyon Rare Plant and Weed Survey - Hells Canyon Reservoir Reach

VITACEAE * *Vitis sp.* grape-vine

* Tribulus terrestris

ZYGOPHYLLACEAE

puncture vine

Vascular Plant Species Hells Canyon Rare Plant and Weed Survey - Oxbow Reservoir Reach

Survey Date(s): 8/4/98 through 5/3/99

Botanical nomenclature follows "Flora of the Pacifc Northwest" (Hitchcock and Cronquist 1973) and "The Jepson Manual" (Hickman 1993)

Family	Scientific Name	Common Name
AMARANTHACEAE	Amaranthus albus	tumbleweed
ANACARDIACEAE	Rhus glabra	smooth sumac
	Rhus radicans	poison ivy
APIACEAE	* Anthriscus scandicina	bur chervil
	* Conium maculatum	poison-hemlock
	Lomatium dissectum	fern-leaved lomatium
ASCLEPIADACEAE	Asclepias fascicularis	Mexican milkweed
	Asclepias speciosa	showy milkweed
ASTERACEAE	Achillea millefolium	common yarrow
	Ambrosia acanthicarpa	annual burweed
	Ambrosia artemisiifolia	annual ragweed
	* Anthemis cotula	mayweed chamomile
	Artemisia ludoviciana	prairie sage
	Aster sp.	aster
	Balsamorhiza sagittata	arrow-leaf balsamroot
	Bidens vulgata	tall beggar-ticks
	* Cichorium intybus	wild succory
	* Cirsium arvense	Canada thistle
	Cirsium utahense	Utah thistle
	* Cirsium vulgare	bull thistle
	* Conyza canadensis	horseweed
	Erigeron divergens var. divergens	diffuse fleabane
	Erigeron strigosus	daisy fleabane
	Gnaphalium palustre	lowland cudweed
	Grindelia squarrosa	resin-weed
	Helianthella uniflora	Rocky Mountain helianthella
	Helianthus annuus	common sunflower
	* Lactuca serriola	prickly lettuce
	Lagophylla ramosissima	slender hareleaf
	* Onopordum acanthium	scotch thistle

ASTERACEAE	Solidago occidentalis	western goldenrod
	Stephanomeria tenuifolia	narrow-leaved skeletonweed
	* Taraxacum officinale	common dandelion
	* Tragopogon dubius	salsify
	Xanthium strumarium	common cocklebur
BETULACEAE	Alnus rhombifolia	white alder
	Alnus sinuata	Sitka alder
BORAGINACEAE	Amsinckia intermedia	ranchers fiddleneck
	Amsinckia retrorsa	rigid fiddleneck
	Cryptantha sp.	cryptantha
	Cynoglossum occidentale	western hound's-tongue
	* Cynoglossum officinale	common hounds-tongue
BRASSICACEAE	* Alyssum alyssoides	pale alyssum
	Cardaria draba	heart-podded hoarycress
	* Lepidium campestre	fieldpeppergrass
	* Lepidium latifolium	pepperwort
	* Rorippa nasturtium-aquaticum	water-cress
	* Sisymbrium altissimum	Jim Hill mustard
CAPPARIDACEAE	Polanisia trachysperma	clammy-weed
CAPRIFOLIACEAE	Sambucus cerulea	blue elderberry
CARYOPHYLLACEAE	* Silene antirrhina	sleepy cat
	* Vaccaria segetalis	cowcockle
CHENOPODIACEAE	Chenopodium album	lamb's quarters
	* Chenopodium botrys	Jerusalem oak
	* Kochia scoparia	kochia
	* Salsola kali	Russian thistle
CONVOLVULACEAE	* Convolvulus arvensis	field bindweed
CORNACEAE	Cornus stolonifera	red-osier dogwood
CYPERACEAE	Carex hystricina	porcupine sedge
	Carex sp.	sedge
	Carex stipata	sawbeak sedge
	Carex vulpinoidea	fox sedge
	Cyperus strigosus	straw-colored flatsedge
	Scirpus sp.	bulrush

DIPSACACEAE	* Dipsacus sylvestris	teasel
ELAEAGNACEAE	* Elaeagnus angustifolia	Russian olive
EQUISETACEAE	Equisetum laevigatum	smooth scouring-rush
EUPHORBIACEAE	Eremocarpus setigerus Euphorbia glyptosperma	turkey-mullein corrugate-seeded spurge
FABACEAE	 * Amorpha fruticosa Astragalus sp. Lotus purshianus * Medicago sativa * Melilotus alba * Melilotus officinalis * Trifolium repens 	false indigo locoweed Spanish clover alfalfa white sweet-clover common yellow sweet-clover white clover
GERANIACEAE	* Erodium cicutarium	filaree
GROSSULARIACEAE	Ribes aureum	golden currant
HYDRANGEACEAE	Philadelphus lewisii	mockorange
HYDROPHYLLACEAE	Phacelia linearis	threadleaf phacelia
HYPERICACEAE	* Hypericum perforatum	common St. Johnswort
IRIDACEAE	* Iris pseudacorus	yellow flag
JUGLANDACEAE	* Juglans regia	English walnut
JUNCACEAE	Juncus acuminatus Juncus confusus Juncus effusus Juncus sp. Juncus tenuis	tapered rush Colorado rush common rush rush slender rush
LAMIACEAE	Lycopus asper * Marrubium vulgare * Nepeta cataria * Salvia aethiopis	rough bugleweed horehound catnip Mediterranean sage
LILIACEAE	Camassia cusickii	Cusick's camas

Hells Canyon Rare Plant and Weed Survey - Oxbow Reservoir Reach

LOASACEAE	Mentzelia dispersa Mentzelia laevicaulis	small-flowered mentzelia blazing-star mentzelia
LYTHRACEAE	* Lythrum salicaria	purple loosestrife
MALVACEAE	Malva neglecta	dwarf mallow
OLEACEAE	* Fraxinus sp.	ash
ONAGRACEAE	Epilobium paniculatum Epilobium watsonii Gaura parviflora Oenothera boothii ssp. boothii Oenothera strigosa	tall annual willow-weed Watson's willow-weed small-flowered gaura Booth's evening-primrose common evening primrose
PINACEAE	Pinus ponderosa	ponderosa pine
PLANTAGINACEAE	* Plantago lanceolata Plantago major Plantago patagonica	ribwort common plantain Indian-wheat
POACEAE	 * Aegilops cylindrica * Agropyron repens * Agropyron sp. Agropyron spicatum var. spicatum Aristida longiseta * Avena fatua * Bromus brizaeformis * Bromus commutatus * Bromus commutatus * Bromus sterilis * Bromus tectorum Cenchrus longispinus Cinna latifolia * Digitaria sanguinalis Elymus canadensis Elymus cinereus * Eragrostis cilianensis * Eragrostis pilosa Festuca scabrella Hordeum jubatum Panicum capillare Phalaris arundinacea * Phleum pratense 	jointed goatgrass quackgrass wheatgrass blue-bunch wheatgrass red threeawn wild oat rattlesnake brome hairy chess Japanese brome barren brome cheatgrass bur-grass woodreed hairy crabgrass canada wildrye giant wildrye stinkgrass India lovegrass rough fescue foxtail barley common witchgrass reed canarygrass timothy

POACEAE	 * Poa bulbosa Poa compressa Poa pratensis * Polypogon monspeliensis * Setaria viridis Sporobolus cryptandrus Stipa sp. * Taeniatherum caput-medusae 	bulbous bluegrass Canadian bluegrass Kentucky bluegrass rabbitfoot polypogon green bristlegrass sand dropseed needlegrass medusahead wildrye
POLEMONIACEAE	Collomia sp.	collomia
POLYGONACEAE	Eriogonum compositum Eriogonum heracleoides Eriogonum niveum Eriogonum strictum Eriogonum umbellatum Eriogonum vimineum Polygonum aviculare * Polygonum aviculare * Polygonum douglasii * Polygonum douglasii * Polygonum hydropiper Polygonum majus Polygonum persicaria Polygonum sp. * Rumex acetosella * Rumex crispus Rumex sp.	northern buckwheat Wyeth's buckwheat snow buckwheat strict buckwheat broom buckwheat doorweed climbing bindweed Douglas' knotweed smartweed wiry knotweed spotted ladysthumb knotweed field sorrel curly dock dock
POLYPODIACEAE	Cystopteris fragilis	bladder-fern
PORTULACACEAE	* Portulaca oleracea	common purslane
PRIMULACEAE	Dodecatheon conjugens	desert shooting-star
RANUNCULACEAE	Clematis columbiana var. columbiana Clematis ligusticifolia * Ranunculus testiculatus	Columbia clematis western clematis hornseed buttercup
RHAMNACEAE	Rhamnus purshiana	cascara
ROSACEAE	Amelanchier alnifolia Crataegus columbiana Crataegus douglasii var. douglasii Prunus americana * Prunus armeniaca	western service berry Columbia hawthorn black hawthorn wild plum apricot

ROSACEAE	Prunus emarginata Prunus sp. Prunus virginiana Purshia tridentata * Pyrus malus Rosa sp. Rosa woodsii * Rubus discolor	bittercherry cherry chokecherry bitter-brush cultivated apple rose Wood's rose Himalayan blackberry
	Sorbus scopulina	mountain-ash
RUBIACEAE	Galium aparine var. echinospermum Galium triflorum	bedstraw; goose-grass sweet-scented bedstraw
SALICACEAE	Salix exigua Salix lasiandra var. caudata Salix sp.	river-bank willow whiplash willow willow
SAXIFRAGACEAE	Bolandra oregana	bolandra
SCROPHULARIACEAE	Collinsia sp. Mimulus guttatus Mimulus patulus Penstemon deustus * Verbascum blattaria * Verbascum thapsus Veronica anagallis-aquatica Veronica peregrina	blue-eyed mary yellow monkey-flower stalk-leaved monkey-flower hot-rock penstemon moth mullein common mullein water speedwell purslane speedwell
SOLANACEAE	Physalis longifolia * Solanum dulcamara	long-leaved ground-cherry bittersweet
TYPHACEAE	Typha latifolia	cat-tail
ULMACEAE	Celtis reticulata * Ulmus sp.	hackberry elm
URTICACEAE	Urtica dioica	stinging nettle
VALERIANACEAE	Plectritis macrocera	long-horn plectritis
VERBENACEAE	Verbena bracteata Verbena stricta	bracted verbena hoary verbena
ZYGOPHYLLACEAE	* Tribulus terrestris	puncture vine

Vascular Plant Species Hells Canyon Rare Plant and Weed Survey - Brownlee Reservoir Reach

Survey Date(s): 8/7/98 through 6/4/99

Botanical nomenclature follows "Flora of the Pacifc Northwest" (Hitchcock and Cronquist 1973) and "The Jepson Manual" (Hickman 1993)

* = introduced plants

Family	Scientific Name	Common Name
ACERACEAE	*Acer saccharinum	silver maple
AIZOACEAE	Mollugo verticillata	carpetweed
AMARANTHACEAE	Amaranthus albus	tumbleweed
	Amaranthus powellii	Powell's amaranth
	* Amaranthus retroflexus	rough pigweed
	Amaranthus sp.	amaranth
ANACARDIACEAE	Rhus glabra	smooth sumac
	Rhus radicans	poison ivy
APIACEAE	* Anthriscus scandicina	bur chervil
	* Conium maculatum	poison-hemlock
	Lomatium dissectum	fern-leaved lomatium
	Lomatium grayi	Gray's desert-parsley
	Lomatium nudicaule	pestle parsnip
	Lomatium sp.	desert-parsley
	Lomatium triternatum	nine-leaf lomatium
APOCYNACEAE	Apocynum cannabinum	common dogbane
ASCLEPIADACEAE	Asclepias fascicularis	Mexican milkweed
	Asclepias speciosa	showy milkweed
ASTERACEAE	Achillea millefolium	common yarrow
	Ambrosia acanthicarpa	annual burweed
	Ambrosia artemisiifolia	annual ragweed
	Artemisia dracunculus var. dracunculus	tarragon
	Artemisia ludoviciana	prairie sage
	Artemisia rigida	stiff sagebrush
	Artemisia tridentata	big sagebrush
	Aster sp.	aster
	Balsamorhiza sagittata	arrow-leaf balsamroot

Hells Canyon Rare Plant and Weed Survey - Brownlee Reservoir Reach

ASTERACEAE

Bidens vulgata Chaenactis douglasii * Chondrilla juncea Chrysothamnus nauseosus Chrysothamnus viscidiflorus * Cichorium intybus * Cirsium arvense Cirsium utahense

- * Cirsium vulgare
- * Conyza canadensis Crepis occidentalis Gnaphalium palustre Grindelia squarrosa Gutierrezia sarothrae Haplopappus radiatus Helianthus annuus Iva axillaris Iva xanthifolia
- * Lactuca serriola Lagophylla ramosissima Machaeranthera canescens Matricaria matricarioides
- * Onopordum acanthium Solidago missouriensis Solidago occidentalis Stephanomeria tenuifolia
- * Taraxacum officinale
- * Tragopogon dubius Xanthium strumarium

BETULACEAE

BORAGINACEAE

Betula occidentalis

Amsinckia intermedia Amsinckia retrorsa Amsinckia tessellata

- * Asperugo procumbens Cryptantha sp.
- * Cynoglossum officinale Lithospermum ruderale
- * Myosotis arvensis

BRASSICACEAE

* Alyssum alyssoides
* Camelina microcarpa Cardaria draba
* Chorispora tenella Descurainia pinnata

tall beggar-ticks hoary chaenactis rush skeleton-weed gray rabbit-brush green rabbit-brush wild succory Canada thistle Utah thistle bull thistle horseweed western hawksbeard lowland cudweed resin-weed broom snakeweed Snake River goldenweed common sunflower poverty weed tall marsh-elder prickly lettuce slender hareleaf hoary aster pine-apple weed scotch thistle Missouri goldenrod western goldenrod narrow-leaved skeletonweed common dandelion salsify common cocklebur

water birch

ranchers fiddleneck rigid fiddleneck tessellate fiddleneck madwort cryptantha common hounds-tongue Columbia puccoon field forget-me-not

pale alyssum littlepod falseflax heart-podded hoarycress blue mustard western tansymustard

BRASSICACEAE	 * Descurainia sophia Draba verna * Lepidium latifolium * Lepidium perfoliatum Physaria oregana Rorippa sp. * Sisymbrium altissimum Thelypodium laciniatum * Thlaspi arvense 	flixweed spring whitlow-grass pepperwort clasping peppergrass Oregon twinpod yellowcress Jim Hill mustard thickleaved thelypody fanweed
CAPRIFOLIACEAE	Sambucus cerulea	blue elderberry
CARYOPHYLLACEAE	* Arenaria serpyllifolia * Silene antirrhina * Vaccaria segetalis	thyme-leaf sandwort sleepy cat cowcockle
CELASTRACEAE	Glossopetalon nevadense var. stipuliferum	spiny green-bush
CHENOPODIACEAE	Atriplex patula Chenopodium album Chenopodium glaucum * Kochia scoparia * Salsola kali Sarcobatus vermiculatus	orache lamb's quarters glaucous goosefoot kochia Russian thistle greasewood
CONVOLVULACEAE	* Convolvulus arvensis	field bindweed
CORNACEAE	Cornus stolonifera	red-osier dogwood
CUPRESSACEAE	Juniperus occidentalis	western juniper
CUSCUTACEAE	Cuscuta sp.	dodder
CYPERACEAE	Carex lanuginosa Carex vulpinoidea Cyperus aristatus Cyperus esculentus Eleocharis sp. Scirpus acutus	woolly sedge fox sedge awned flatsedge yellow nut-grass spike-rush hardstem bulrush
DIPSACACEAE	* Dipsacus sylvestris	teasel
ELAEAGNACEAE	* Elaeagnus angustifolia	Russian olive

EQUISETACEAE	Equisetum laevigatum	smooth scouring-rush
EUPHORBIACEAE	* Euphorbia esula Euphorbia glyptosperma Euphorbia serpyllifolia	leafy spurge corrugate-seeded spurge thyme-leaf spurge
FABACEAE	 * Amorpha fruticosa Astragalus cusickii Astragalus purshii * Daucus carota Glycyrrhiza lepidota Lupinus caudatus Lupinus laxiflorus var. calcaratus Lupinus leucophyllus Lupinus sp. * Medicago lupulina * Medicago sativa * Melilotus alba * Melilotus officinalis Petalostemon ornatum * Robinia pseudo-acacia Trifolium sp. 	false indigo Cusick's milk-vetch woolly-pod milk-vetch Queen Anne's lace licorice tailcup lupine spurred lupine velvet lupine lupine hop clover alfalfa white sweet-clover common yellow sweet-clover western prairie-clover robinia clover
GERANIACEAE	* Erodium cicutarium	filaree
GROSSULARIACEAE	Ribes aureum	golden currant
HYDRANGEACEAE	Philadelphus lewisii	mockorange
HYDROPHYLLACEAE	Hydrophyllum capitatum Phacelia hastata Phacelia linearis	ball-head waterleaf silverleaf phacelia threadleaf phacelia
HYPERICACEAE	* Hypericum perforatum	common St. Johnswort
IRIDACEAE	* Iris pseudacorus	yellow flag
JUNCACEAE	Juncus acuminatus Juncus balticus	tapered rush Baltic rush
LAMIACEAE	* Lamium amplexicaule Lycopus asper * Marrubium vulgare Mentha arvensis * Nepeta cataria	common dead-nettle rough bugleweed horehound field mint catnip

Hells Canyon Rare Plant and Weed Survey - Brownlee Reservoir Reach

LEMNACEAE	Lemna minor	water lentil
LILIACEAE	Allium acuminatum * Asparagus officinalis Brodiaea douglasii Smilacina stellata	tapertip onion asparagus wild hyacinth star-flowered Solomon's-seal
LOASACEAE	Mentzelia laevicaulis	blazing-star mentzelia
LYTHRACEAE	* Lythrum salicaria	purple loosestrife
MALVACEAE	Malva neglecta Sida hederacea	dwarf mallow alkali-mallow
ONAGRACEAE	Boisduvalia densiflora Epilobium angustifolium Epilobium paniculatum Epilobium watsonii Gaura parviflora Oenothera boothii ssp. boothii Oenothera strigosa	dense spike-primrose common fireweed tall annual willow-weed Watson's willow-weed small-flowered gaura Booth's evening-primrose common evening primrose
PLANTAGINACEAE	* Plantago lanceolata Plantago major Plantago patagonica	ribwort common plantain Indian-wheat
POACEAE	 * Agropyron cristatum * Agropyron repens Agropyron spicatum var. spicatum Alopecurus aequalis Aristida longiseta * Avena fatua * Bromus brizaeformis * Bromus commutatus * Bromus japonicus * Bromus tectorum * Dactylis glomerata * Digitaria sanguinalis * Echinochloa crusgalli Elymus cinereus Festuca idahoensis var. idahoensis Glyceria sp. Glyceria striata Hordeum jubatum 	crested wheatgrass quackgrass blue-bunch wheatgrass shortawn foxtail red threeawn wild oat rattlesnake brome hairy chess Japanese brome cheatgrass orchard grass hairy crabgrass large barnyard-grass giant wildrye Idaho fescue mannagrass fowl mannagrass foxtail barley

POACEAE	* Hordeum leporinum	charming barley
IOACEAE	Panicum capillare	common witchgrass
	Phalaris arundinacea	reed canarygrass
		common reed
	Phragmites communis	
	* Poa bulbosa	bulbous bluegrass
	Poa nevadensis	Nevada bluegrass
	Poa pratensis	Kentucky bluegrass
	Poa scabrella	pine bluegrass
	Poa secunda	Sandberg's bluegrass
	* Polypogon monspeliensis	rabbitfoot polypogon
	Sitanion hystrix	bottlebrush squirreltail
	Sporobolus cryptandrus	sand dropseed
	* Taeniatherum caput-medusae	medusahead wildrye
POLEMONIACEAE	Collomia grandiflora	large flowered collomia
	Collomia linearis	narrow-leaf collomia
	Collomia sp.	collomia
	Phlox longifolia	long-leaf phlox
POLYGONACEAE	Eriogonum compositum	northern buckwheat
	Eriogonum niveum	snow buckwheat
	Eriogonum ovalifolium	oval-leaved eriogonum
	Eriogonum umbellatum	sulfur buckwheat
	Polygonum coccineum	water smartweed
	* Polygonum convolvulus	climbing bindweed
	Polygonum persicaria	spotted ladysthumb
	* Rumex crispus	curly dock
	Rumex crispus Rumex sp.	dock
	Kumer sp.	UUCK
POLYPODIACEAE	Cystopteris fragilis	bladder-fern
PORTULACACEAE	Montia perfoliata	miner's lettuce
	* Portulaca oleracea	common purslane
RANUNCULACEAE	Clematis hirsutissima	sugarbowls
	Clematis ligusticifolia	western clematis
	Ranunculus flabellaris	yellow water-buttercup
	Ranancaius fraoctaints	yenow water buttereup
ROSACEAE	Amelanchier alnifolia	western service berry
	Crataegus douglasii var. douglasii	black hawthorn
	Prunus virginiana	chokecherry
	Purshia tridentata	bitter-brush
	Rosa woodsii	Wood's rose
	* Rubus discolor	Himalayan blackberry
		- •

RUBIACEAE	Galium aparine var. echinospermum Galium triflorum	bedstraw; goose-grass sweet-scented bedstraw
SALICACEAE	 * Populus deltoides var. occidentalis Populus trichocarpa * Salix alba var. vitellina Salix exigua ssp. exigua Salix lasiandra var. lasiandra Salix sp. 	Great Plains cottonwood black cottonwood golden willow slender willow red willow willow
SCROPHULARIACEAE	Collinsia parviflora * Linaria dalmatica Mimulus cusickii Mimulus guttatus Penstemon deustus Penstemon glandulosus var. glandulosus * Verbascum blattaria * Verbascum thapsus Veronica americana Veronica peregrina	blue-eyed mary dalmatian toadflax Cusick's monkey-flower yellow monkey-flower hot-rock penstemon glandular penstemon moth mullein common mullein American brooklime purslane speedwell
SOLANACEAE	Physalis longifolia	long-leaved ground-cherry
TAMARICACEAE	* Tamarix pentandra	tamarisk
TYPHACEAE	Typha latifolia	cat-tail
ULMACEAE	Celtis reticulata * Ulmus americana	hackberry American elm
URTICACEAE	Urtica dioica	stinging nettle
VALERIANACEAE	Plectritis ciliosa	long-spurred plectritis
VERBENACEAE	Verbena bracteata	bracted verbena
ZYGOPHYLLACEAE	* Tribulus terrestris	puncture vine

Vascular Plant Species Hells Canyon Rare Plant and Weed Survey - Weiser Reach

Survey Date(s): 9/11/98 through 6/4/99

Botanical nomenclature follows "Flora of the Pacifc Northwest" (Hitchcock and Cronquist 1973) and "The Jepson Manual" (Hickman 1993)

Family	Scientific Name	Common Name
	* 4 1	
ACERACEAE	* Acer negundo	box-elder
	* Acer saccharinum	silver maple
	Acer sp.	maple
AMARANTHACEAE	Amaranthus albus	tumbleweed
	Amaranthus powellii	Powell's amaranth
	* Amaranthus retroflexus	rough pigweed
	Amaranthus sp.	amaranth
APIACEAE	* Conium maculatum	poison-hemlock
APOCYNACEAE	Apocynum cannabinum	common dogbane
ASCLEPIADACEAE	Asclepias speciosa	showy milkweed
ASTERACEAE	Achillea millefolium	common yarrow
	Ambrosia psilostachya	western ragweed
	Artemisia ludoviciana	prairie sage
	Artemisia tridentata	big sagebrush
	Bidens frondosa	leafy beggar-ticks
	Chrysothamnus nauseosus	gray rabbit-brush
	* Cirsium arvense	Canada thistle
	* Cirsium vulgare	bull thistle
	* Conyza canadensis	horseweed
	Grindelia squarrosa	resin-weed
	Helenium autumnale	sneezeweed
	Helianthus annuus	common sunflower
	* Lactuca serriola	prickly lettuce
	* Onopordum acanthium	scotch thistle
	Solidago occidentalis	western goldenrod
	* Taraxacum officinale	common dandelion
	* Tragopogon dubius	salsify
	Xanthium strumarium	common cocklebur

BORAGINACEAE	Amsinckia retrorsa Amsinckia sp.	rigid fiddleneck fiddleneck
BRASSICACEAE	* Capsella bursa-pastoris Cardaria draba Draba verna * Lepidium latifolium * Lepidium perfoliatum * Sisymbrium altissimum	shepherd's-purse heart-podded hoarycress spring whitlow-grass pepperwort clasping peppergrass Jim Hill mustard
CHENOPODIACEAE	Atriplex patula Chenopodium album Chenopodium glaucum * Kochia scoparia * Salsola kali Sarcobatus vermiculatus	orache lamb's quarters glaucous goosefoot kochia Russian thistle greasewood
CONVOLVULACEAE	* Convolvulus arvensis	field bindweed
CUCURBITACEAE	Echinocystis lobata	wild cucumber
CUSCUTACEAE	Cuscuta sp.	dodder
CYPERACEAE	Cyperus aristatus Cyperus erythrorhizos Cyperus strigosus	awned flatsedge red-rooted flatsedge straw-colored flatsedge
DIPSACACEAE	* Dipsacus sylvestris	teasel
ELAEAGNACEAE	* Elaeagnus angustifolia	Russian olive
EQUISETACEAE	Equisetum laevigatum	smooth scouring-rush
EUPHORBIACEAE	* Euphorbia esula Euphorbia glyptosperma	leafy spurge corrugate-seeded spurge
FABACEAE	* Amorpha fruticosa * Medicago sativa * Melilotus alba	false indigo alfalfa white sweet-clover
GERANIACEAE	Geranium sp.	geranium
GROSSULARIACEAE	Ribes aureum Ribes cereum	golden currant squaw or wax currant

IRIDACEAE	* Iris pseudacorus	yellow flag
LAMIACEAE	* Lamium amplexicaule * Nepeta cataria	common dead-nettle catnip
LILIACEAE	Allium acuminatum * Asparagus officinalis Smilacina stellata	tapertip onion asparagus star-flowered Solomon's-seal
LYTHRACEAE	* Lythrum salicaria	purple loosestrife
MALVACEAE	Malva neglecta Sida hederacea	dwarf mallow alkali-mallow
MORACEAE	* Morus alba	white mulberry
OLEACEAE	* Fraxinus pennsylvanica	green ash
ONAGRACEAE	Circaea alpina Epilobium paniculatum Gaura parviflora	enchanter's nightshade tall annual willow-weed small-flowered gaura
PLANTAGINACEAE	Plantago major	common plantain
POACEAE	Agropyron spicatum var. spicatum Alopecurus aequalis * Bromus commutatus * Bromus japonicus * Bromus tectorum * Echinochloa crusgalli Elymus cinereus * Eragrostis cilianensis Hordeum jubatum Panicum capillare Phalaris arundinacea * Poa bulbosa * Taeniatherum caput-medusae	blue-bunch wheatgrass shortawn foxtail hairy chess Japanese brome cheatgrass large barnyard-grass giant wildrye stinkgrass foxtail barley common witchgrass reed canarygrass bulbous bluegrass medusahead wildrye
POLYGONACEAE	Polygonum coccineum Polygonum hydropiperoides * Polygonum lapathifolium * Rumex crispus	water smartweed waterpepper willow weed curly dock

PORTULACACEAE	Montia perfoliata	miner's lettuce
RANUNCULACEAE	* Ranunculus testiculatus	hornseed buttercup
ROSACEAE	Purshia tridentata Rosa sp. Rosa woodsii	bitter-brush rose Wood's rose
RUBIACEAE	Galium aparine var. echinospermum Galium triflorum	bedstraw; goose-grass sweet-scented bedstraw
SALICACEAE	Salix exigua Salix sp.	river-bank willow willow
SCROPHULARIACEAE	* Verbascum thapsus	common mullein
TAMARICACEAE	* Tamarix pentandra	tamarisk
ULMACEAE	* Ulmus americana	American elm
URTICACEAE	Urtica dioica	stinging nettle
ZYGOPHYLLACEAE	* Tribulus terrestris	puncture vine

Appendix 2: Noxious Weed Data Forms

(This appendix is contained in five separate volumes. If you wish to review this appendix, please contact Gary Holmstead at Idaho Power Company.)

Appendix 3: Topographic Maps Showing Weed Populations

(This appendix is contained in a separate volume. If you wish to review this appendix, please contact Gary Holmstead at Idaho Power Company.)

Appendix 4: Correlation Matrix of Disturbance Types For Weed Investigation
	Alluvial	Flowzone	Livestock	Mining	Fire	Road	Rec.	Trail	Industry	Ag.	Res.	ORV	Other
Alluvial		0.2210	0.0420	-0.0060	-0.1500	-0.0670	0.1790	-0.0900	-0.0380	-0.0970	-0.0470	-0.0120	-0.0540
Flowzone	<.0001		-0.1710	-0.0010	-0.4090	-0.1380	0.1000	-0.1050	-0.0070	-0.0570	0.0720	0.0770	-0.0020
Livestock	0.0650	<.0001		0.0190	0.3250	0.0450	-0.0130	0.0650	-0.0460	-0.0480	0.0570	0.1050	0.0200
Mining	0.8062	0.9759	0.4128		-0.0090	0.0350	-0.0110	0.0030	0.2770	-0.0250	-0.0180	0.0250	-0.0160
Fire	<.0001	<.0001	<.0001	0.6871		0.0830	0.0900	0.1200	-0.0440	-0.0730	0.0210	-0.0400	0.0930
Road	0.0033	<.0001	0.0501	0.1268	0.0003		0.3570	-0.0140	0.0860	-0.0960	0.1010	0.1730	0.0500
Recreation	<.0001	<.0001	0.5776	0.6357	<.0001	<.0001		0.2380	0.0100	-0.2480	-0.0190	0.0470	0.0480
Trail	<.0001	<.0001	0.0046	0.9085	<.0001	0.5326	<.0001		-0.0210	-0.0070	0.0770	0.1460	-0.0600
Industry	0.0994	0.7433	0.0458	<.0001	0.0550	0.0002	0.6578	0.3541		0.0420	-0.0090	0.0290	-0.0200
Agriculture	<.0001	0.0121	0.0355	0.2817	0.0015	<.0001	<.0001	0.7688	0.0652		0.2090	-0.0190	-0.0610
Residential	0.0391	0.0015	0.0128	0.4321	0.3581	<.0001	0.4027	0.0008	0.6875	<.0001		-0.0100	-0.0450
ORV	0.5960	0.0007	<.0001	0.2793	0.0789	<.0001	0.0410	<.0001	0.2114	0.4144	0.6476		0.0890
Other	0.0180	0.9403	0.3942	0.4932	<.0001	0.0273	0.0370	0.0090	0.3925	0.0075	0.0510	0.0001	

Correlation matrix of disturbance types. Numbers above the diagonal are correlation coefficients. Numbers below the diagonal are Pearson r to z p-values. P-values in bold indicate a significant correlation; those in italics indicate a negative correlation.

Appendix 5: Contingency Table Analysis of Distribution of Disturbance Across Reaches

Contingency table analysis of distribution of disturbance types across reaches. Disturbance types "industry," "mining," and "ORV" were removed from this analysis, because they had expected frequencies less than 5 in at least one cell.

I. Summary Table for Entire Contingency Table

DF	36
Chi Square	1162.759
Chi Square P-Value	<.0001

II. Observed Frequencies for Reach, Disturbance

	Agriculture	Alluvial	Fire	Flowzone	Other	Recreation	Residential	Road	Stock	Trail	Totals
Brownlee	29	181	91	442	51	416	24	217	305	38	1794
Downstream	20	47	36	67	1	129	6	15	121	46	488
HCR	0	112	15	112	1	218	11	158	29	21	677
Oxbow	0	50	5	67	1	151	4	105	87	16	486
Weiser	110	31	30	88	6	25	18	27	43	6	384
Totals	159	421	177	776	60	939	63	522	585	127	3829

III. Expected Values for Reach, Disturbance, if Reach and Disturbance types are independent

	Agriculture	Alluvial	Fire	Flowzone	Other	Recreation	Residential	Road	Stock	Trail	Totals
Brownlee	74.496	197.251	82.930	363.579	28.112	439.949	29.517	244.572	274.090	59.503	1794.000
Downstream	20.264	53.656	22.558	98.900	7.647	119.674	8.029	66.528	74.557	16.186	488.000
HCR	28.113	74.436	31.295	137.203	10.609	166.023	11.139	92.294	103.433	22.455	677.000
Oxbow	20.181	53.436	22.466	98.495	7.616	119.184	7.996	66.255	74.252	16.120	486.000
Weiser	15.946	42.221	17.751	77.823	6.017	94.170	6.318	52.350	58.668	12.736	384.000
Totals	159.000	421.000	177.000	776.000	60.000	939.000	63.000	522.000	585.000	127.000	3829.000

IV. Post Hoc Cell Contributions for Reach, Disturbance. Cells in bold are significant the 0.05 level (i.e. the occurrence of this disturbance type is different than would be expected if disturbance and reach were independent.) Negative cells represent a disturbance that is less frequent than expected on the given reach.

	Agriculture	Alluvial	Fire	Flowzone	Other	Recreation	Residential	Road	Stock	Trail
Brownlee	-7.385	-1.682	1.245	6.318	5.968	-1.803	-1.405	-2.602	2.782	-3.889
Downstream	064	-1.031	3.102	-3.846	-2.594	1.050	773	-7.277	6.256	8.068
HCR	-5.969	5.086	-3.287	-2.656	-3.277	5.118	046	8.111	-8.764	344
Oxbow	-4.911	533	-4.038	-3.804	-2.586	3.590	-1.525	5.482	1.720	032
Weiser	25.364	-1.930	3.138	1.362	007	-8.650	4.941	-3.975	-2.343	-2.024

Appendix 6: Statistical Results - Arranged by Weed Species

Statistical results, arranged by species.

This appendix contains the results of statistical analyses conducted to determine associations between weed presence and predictors (elevational category, reach, disturbance factors), and to determine association between predictors and population size. All possible comparisons between levels of categorical variables are presented only when that predictor was significant, and for either the test of levels of disturbance or the test of presence of disturbance, but not both. For logistic regression, the baseline value is listed first in the comparison. Note also for logistic regression, levels of categorical variables that were not present in the species cannot be compared, and comparisons are not included. In multiple regression tables, coefficients are reported for significant predictors only. Post-hoc tests of predictors with multiple levels are presented when significant; the baseline value, listed first in comparisons is subtracted from the comparison value. An "S" in the last column of a comparison indicates that the difference is significant.

I. Ambrosia artemisiifolia

- A. Tests for association between predictors and presence of weed species
- 1. Test for effects of PRESENCE of disturbance types on weed presence/absence

Logistic Model Coefficients Table for AMAR						
	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-2.906	.562	-5.171	26.742	<.0001	.055
Disturbance factors						
Flow zone	.181	.529	.343	.117	.7319	1.199
Reach						
Oxbow - Hells Can. Res.	589	.376	-1.566	2.451	.1174	.555
Oxbow-Brownlee	-4.183	1.039	-4.025	16.204	<.0001	.015
Oxbow-Downstream	-3.200	1.049	-3.051	9.307	.0023	.041
Hells CanBrownlee	-3.594	1.042	-3.449	11.897	.0006	.027
Hells CanDownstream	-2.611	1.042	-2.506	6.280	.0122	.073
Brownlee-Downstream	.983	1.430	.687	.472	.4919	2.673
Elevation						
below-above	.248	.627	.395	.156	.6927	1.281
below-crosses	.709	.544	1.304	1.701	.1922	2.033

Logistic Whole Model Fit Table for AMAR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	69.402	<.0001

Logistic Likelihood Ratio Tests Table for AMAR

	DF	Chi-Square	P-Value
Reach	4	65.287	<.0001
Elevation	2	2.247	.3251

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model	Coefficients	Table for AMAR	
Logistic model	Coontenents	ruote for runnin	

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.187	.772	-4.130	17.060	<.0001	.041
Reach						
Oxbow - Hells Can. Res.	600	.377	-1.591	2.530	.1117	.549
Oxbow-Brownlee	-4.255	1.050	-4.053	16.428	<.0001	.014
Oxbow-Downstream	-3.214	1.049	-3.064	9.390	.0022	.040
Elevation						
below-above	.393	.657	.598	.358	.5499	1.481
below-crosses	.801	.543	1.475	2.175	.1403	2.229
Disturbance factors						
Flow zone	.130	.204	.640	.409	.5223	1.139

Logistic Whole Model Fit Table for AMAR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	69.692	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	50.691	16.897	7.292	.0011
Elevation	2	13.624	6.812	2.940	.0706
Flow zone	1	3.135	3.135	1.353	.2553
Residual	26	60.244	2.317		

Scheffe for ln net area

Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	2.109	1.634	.0075	S
Oxbow, Brownlee	2.571	4.688	.4569	
Oxbow, Downstream	5.056	4.688	.0307	S
Hells Canyon Res., Brownlee	.462	4.697	.9932	
Hells Canyon Res., Downstream	2.947	4.697	.3397	
Brownlee, Downstream	2.485	6.431	.7235	

Scheffe for ln net area

Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value
below, above	039	1.815	.9984
below, cross	798	1.688	.4812
above, cross	759	1.636	.4941

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	54.306	18.102	7.937	.0006
Elevation	2	14.600	7.300	3.201	.0572
Flow zone	1	4.078	4.078	1.788	.1927
Residual	26	59.301	2.281		

II. Amorpha fruticosa

-

A. Tests for association between predictors and presence of weed species

1. Test for effects of PRESENCE of disturbance types on weed presence/absence

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-2.346	.384	-6.112	37.353	<.0001	.096
Reach						
Oxbow - Hells Can. Res.	.392	.336	1.168	1.365	.2427	1.480
Oxbow-Brownlee	.136	.288	.474	.224	.6357	1.146
Oxbow-Downstream	558	.436	-1.279	1.635	.2009	.572
Oxbow-Weiser	.068	.433	.158	.025	.8748	1.071
Elevation						
below-above	-3.135	.558	-5.617	31.550	<.0001	.044
below-crosses	-3.823	.601	-6.358	40.427	<.0001	.022
above-crosses	688	.781	881	.775	.3785	.503
Disturbance factors						
Alluvial	124	.196	632	.399	.5274	.883
Flow zone	1.207	.287	4.211	17.734	<.0001	3.343
Livestock	.072	.234	.307	.095	.7585	1.075
Fire	.263	.473	.556	.309	.5781	1.301
Road	302	.260	-1.162	1.350	.2454	.740
Recreation	.757	.197	3.834	14.699	.0001	2.132
Trail	432	.439	984	.968	.3252	.649
Industrial	1.642	1.304	1.259	1.584	.2082	5.164
Agriculture	812	.585	-1.387	1.925	.1653	.444
Residential	.353	.589	.600	.360	.5486	1.424
ORV	337	.693	486	.236	.6269	.714
Other	317	.665	476	.227	.6340	.729

Logistic Model Coefficients Table for AMFR

Logistic Whole Model Fit Table for AMFR

	DF	Chi-Square	P-Value
Likelihood Ratio	18	477.915	<.0001

Logistic Likelihood Ratio Tests Table for AMFR

	DF	Chi-Square	P-Value
Reach	4	6.588	.1594
Elevation	2	140.453	<.0001

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.485	.952	-3.661	13.406	.0003	.031
Reach						
Oxbow - Hells Can. Res.	.231	.346	.668	.446	.5041	1.260
Oxbow-Brownlee	077	.304	253	.064	.7999	.926
Oxbow-Downstream	600	.444	-1.353	1.830	.1761	.549
Oxbow-Weiser	231	.451	513	.264	.6076	.793
Elevation						
below-above	-3.128	.556	-5.620	31.590	<.0001	.044
below-crosses	-3.819	.601	-6.356	40.401	<.0001	.022
Disturbance factors						
Alluvial	.004	.077	.054	.003	.9570	1.004
Flow zone	.482	.090	5.351	28.631	<.0001	1.620
Livestock	106	.115	922	.851	.3564	.899
Fire	.661	.171	3.867	14.952	.0001	1.937
Road	147	.105	-1.400	1.959	.1616	.863
Recreation	.393	.115	3.430	11.763	.0006	1.482
Trail	216	.171	-1.268	1.609	.2047	.806
Industrial	.165	.547	.301	.091	.7635	1.179
Agriculture	041	.193	213	.045	.8314	.960
Residential	159	.240	661	.437	.5087	.853
ORV	193	.286	674	.454	.5005	.825
Other	297	.225	-1.319	1.741	.1870	.743

Logistic Model Coefficients Table for AMFR

Logistic Whole Model Fit Table for AMFR

-			
	DF	Chi-Square	P-Value
Likelihood Ratio	18	490.995	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	21.857	5.464	2.157	.0752
Elevation	2	2.218	1.109	.438	.6461
Alluvial	1	8.097	8.097	3.197	.0753
Flow zone	1	8.016	8.016	3.164	.0768
Livestock	1	10.314	10.314	4.072	.0449
Fire	1	.527	.527	.208	.6488
Road	1	4.149	4.149	1.638	.2021
Recreation	1	.044	.044	.017	.8953
Trail	1	5.484	5.484	2.165	.1428
Industrial	1	1.509	1.509	.596	.4412
Agriculture	1	20.040	20.040	7.911	.0054
Residential	1	3.418	3.418	1.349	.2468
ORV	1	.808	.808	.319	.5729
Other	1	1.771	1.771	.699	.4041
Residual	200	506.642	2.533		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Alluvial	471	.263	-1.788	.0753
Flow zone	.719	.404	1.779	.0768
Livestock	.603	.299	2.018	.0449
Agriculture	2.713	.965	2.813	.0054

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	25.107	6.277	2.632	.0355
Elevation	2	4.025	2.013	.844	.4315
Alluvial	1	.362	.362	.152	.6974
Flow zone	1	13.572	13.572	5.691	.0180
Livestock	1	2.702	2.702	1.133	.2884
Fire	1	.339	.339	.142	.7066
Road	1	5.549	5.549	2.327	.1287
Recreation	1	2.227	2.227	.934	.3351
Trail	1	15.841	15.841	6.643	.0107
Industrial	1	5.353	5.353	2.245	.1356
Agriculture	1	24.285	24.285	10.184	.0016
Residential	1	2.883	2.883	1.209	.2728
ORV	1	2.089	2.089	.876	.3504
Other	1	.442	.442	.185	.6674
Residual	200	476.923	2.385		

Scheffe for ln net area

Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value
Oxbow, Hells Canyon Res.	017	1.222	>.9999
Oxbow, Brownlee	057	1.090	>.9999
Oxbow, Downstream	1.207	1.760	.3402
Oxbow, Weiser	.735	1.628	.7413
Hells Canyon Res., Brownlee	041	.822	>.9999
Hells Canyon Res., Downstream	1.224	1.608	.2355
Hells Canyon Res., Weiser	.751	1.462	.6359
Brownlee, Downstream	1.265	1.510	.1529
Brownlee, Weiser	.792	1.354	.5094
Downstream, Weiser	473	1.935	.9654

III. Cardaria draba

A. Tests for association between predictors and presence of weed species

1. Test for effects of PRESENCE of disturbance types on weed presence/absence

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-5.081	.728	-6.978	48.687	<.0001	.006
Reach						
Oxbow-Brownlee	1.578	.609	2.593	6.722	.0095	4.848
Oxbow-Downstream	409	.781	524	.275	.6002	.664
Oxbow-Weiser	1.103	.671	1.644	2.703	.1002	3.012
Brownlee-Downstream	-1.988	.550	-3.615	13.066	.0003	.137
Brownlee-Weiser	476	.371	-1.282	1.642	.2000	.621
Downstream-Weiser	1.512	.605	2.499	6.245	.0125	4.535
Elevation						
below-above	1.320	.512	2.580	6.657	.0099	3.745
below-crosses	1.260	.472	2.670	7.131	.0076	3.524
above-crosses	061	.316	193	.037	.8473	.941
Disturbance factors						
Flow zone	857	.398	-2.155	4.643	.0312	.424

Logistic Model Coefficients Table for CADR

Logistic Whole Model Fit Table for CADR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	69.974	<.0001

Logistic Likelihood Ratio Tests Table for CADR

	DF	Chi-Square	P-Value
Reach	4	50.179	<.0001
Elevation	2	9.196	.0101

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model	Coefficients	Table	for	CADR
Logistic Model	coefficients	1 abic	101	CIDR

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.778	.797	-5.997	35.959	<.0001	.008
Reach						
Oxbow- Brownlee	1.575	.608	2.589	6.702	.0096	4.831
Oxbow- Downstream	423	.780	542	.294	.5877	.655
Oxbow-Weiser	1.112	.671	1.657	2.747	.0974	3.040
Elevation						
below-above	1.295	.528	2.452	6.011	.0142	3.653
below-cross	1.260	.476	2.645	6.998	.0082	3.526
Disturbance factors						
Flow zone	261	.129	-2.025	4.102	.0428	.771

Logistic Whole Model Fit Table for CADR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	69.371	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	13.891	4.630	1.187	.3243
Elevation	2	61.968	30.984	7.943	.0010
Flow zone	1	.726	.726	.186	.6681
Residual	49	191.128	3.901		

Scheffe for ln net area

Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below, above	-2.034	2.142	.0660	
below, cross	-3.185	2.132	.0019	S
above, cross	-1.150	1.425	.1361	

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	14.113	4.704	1.209	.3165
Elevation	2	63.731	31.865	8.186	.0009
Flow zone	1	1.116	1.116	.287	.5947
Residual	49	190.738	3.893		

IV. Chondrilla juncea

A. Tests for association between predictors and presence of weed species

1. Test for effects of PRESENCE of disturbance types on weed presence/absence

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-20.109	947.539	021	4.504E-4	.9831	1.849E-9
Reach						
Brownlee-Downstream	871	.539	-1.617	2.614	.1059	.419
Elevation						
below-above	2.169	1.287	1.686	2.841	.0919	8.750
below-crosses	.323	1.364	.237	.056	.8129	1.381
Disturbance factors						
Flow zone	-1.493	1.273	-1.173	1.376	.2408	.225

Logistic Model Coefficients Table for CHJU

Logistic Whole Model Fit Table for CHJU

	DF	Chi-Square	P-Value
Likelihood Ratio	7	41.761	<.0001

Logistic Likelihood Ratio Tests Table for CHJU

	DF	Chi-Square	P-Value
Reach	4	23.269	.0001
Elevation	2	9.026	.0110

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model Coefficients Table for CHJU

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-18.778	953.624	020	3.877E-4	.9843	6.999E-9
Reach						
Oxbow-Brownlee	15.236	953.623	.016	2.553E-4	.9873	4137509.136
Oxbow-Downstream	14.351	953.623	.015	2.265E-4	.9880	1708931.901
Oxbow-Weiser	101	1303.349	-7.720E-5	5.960E-9	>.9999	.904
Elevation						
below-above	1.593	1.282	1.243	1.545	.2138	4.920
below-crosses	069	1.353	051	.003	.9590	.933
Disturbance factors						
Flow zone	739	.474	-1.559	2.430	.1190	.478

Logistic Whole Model Fit Table for CHJU

	DF	Chi-Square	P-Value
Likelihood Ratio	7	43.414	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	1	.001	.001	.001	.9761
Elevation	2	11.585	5.792	4.562	.0336
Flow zone	1	.343	.343	.270	.6127
Residual	12	15.236	1.270		

Scheffe for ln net area

Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below, above	590	3.251	.8813	
below, cross	-3.198	3.847	.1087	
above, cross	-2.609	2.374	.0312	S

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	1	.001	.001	.001	.9761
Elevation	2	11.585	5.792	4.562	.0336
Flow zone	1	.343	.343	.270	.6127
Residual	12	15.236	1.270		

V. Cirsium arvense

- A. Tests for association between predictors and presence of weed species
- 1. Test for effects of PRESENCE of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-5.400	1.054	-5.122	26.237	<.0001	.005
Reach						
Oxbow - Hells Can. Res.	646	1.419	455	.207	.6491	.524
Oxbow-Brownlee	1.879	1.030	1.823	3.324	.0683	6.544
Oxbow-Downstream	046	1.235	038	.001	.9700	.955
Oxbow-Weiser	3.235	1.025	3.156	9.960	.0016	25.415
Hells CanBrownlee	2.524	1.032	2.447	5.986	.0144	12.479
Hells CanDownstream	.599	1.229	.487	.237	.6261	1.820
Hells CanWeiser	3.881	1.023	3.793	14.385	.0001	48.467
Brownlee-Downstream	-1.925	.762	-2.527	6.386	.0115	.140
Brownlee-Weiser	1.357	.314	4.318	18.647	<.0001	3.884
Downstream-Weiser	3.282	.745	4.407	19.424	<.0001	26.624
Elevation						
below-above	.583	.420	1.390	1.931	.1646	1.791
below-crosses	003	.430	006	3.525E-5	.9953	.99
Disturbance factors						
Flow zone	577	.378	-1.527	2.330	.1269	.562

Logistic Model Coefficients Table for CIAR

Logistic Whole Model Fit Table for CIAR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	74.196	<.0001

Logistic Likelihood Ratio Tests Table for CIAR

	DF	Chi-Square	P-Value
Reach	4	68.636	<.0001
Elevation	2	3.205	.2014

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-5.418	1.094	-4.954	24.546	<.0001	.004
Reach						
Oxbow - Hells Can. Res.	653	1.419	460	.212	.6453	.520
Oxbow-Brownlee	1.854	1.031	1.799	3.235	.0721	6.387
Oxbow-Downstream	056	1.235	046	.002	.9635	.945
Oxbow-Weiser	3.223	1.026	3.141	9.867	.0017	25.103
Elevation						
below-above	.706	.436	1.621	2.627	.1051	2.026
below-crosses	.091	.433	.210	.044	.8338	1.095
Disturbance factors						
Flow zone	105	.120	874	.765	.3819	.900

Logistic Model Coefficients Table for CIAR

Logistic Whole Model Fit Table for CIAR

Logistic whole whole induct the table for CIAR						
	DF	Chi-Square	P-Value			
Likelihood Ratio	7	72.558	<.0001			

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	17.450	4.362	1.825	.1414
Elevation	2	10.474	5.237	2.191	.1241
Flow zone	1	1.069	1.069	.447	.5073
Residual	43	102.766	2.390		

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	17.076	4.269	1.774	.1516
Elevation	2	10.100	5.050	2.099	.1350
Flow zone	1	.370	.370	.154	.6968
Residual	43	103.464	2.406		

VI. Cirsium vulgare

-

A. Tests for association between predictors and presence of weed species

1. Test for effects of PRESENCE of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-1.414	.460	-3.074	9.452	.0021	.243
Reach						
Oxbow-Hells Can. Res.	069	.397	173	.030	.8627	.934
Oxbow-Brownlee	-1.727	.490	-3.524	12.417	.0004	.178
Oxbow-Downstream	.045	.432	.103	.011	.9176	1.046
Oxbow-Weiser	-1.004	.638	-1.574	2.477	.1155	.366
Hells Can. ResBrownlee	-1.659	.443	-3.743	14.013	.0002	.190
Hells Can. ResDownstream	.113	.338	.335	.112	.7377	1.120
Hells Can. ResWeiser	936	.584	-1.602	2.565	.1093	.392
Brownlee-Downstream	-1.948	.782	-2.491	6.204	.0127	.142
Brownlee-Weiser	.883	.416	2.120	4.496	.0340	2.418
Downstream-Weiser	2.831	.795	3.561	12.682	.0004	16.970
Elevation						
Below-above	561	.366	-1.534	2.354	.1250	.571
Below-crosses	-1.093	.420	-2.605	6.785	.0092	.335
Disturbance factors						
Alluvial	.760	.291	2.615	6.837	.0089	2.139
Flow zone	-1.878	.410	-4.580	20.977	<.0001	.153
Livestock	638	.323	-1.975	3.900	.0483	.528
Fire	718	.636	-1.129	1.275	.2587	.488
Road	750	.369	-2.035	4.142	.0418	.472
Recreation	061	.295	208	.043	.8351	.941
Trail	.145	.447	.325	.106	.7452	1.156
Agriculture	558	.729	765	.585	.4443	.572
Residential	.192	.779	.246	.061	.8054	1.212
Other	1.304	.684	1.906	3.631	.0567	3.685

Logistic Model Coefficients Table for CIVU

Logistic Whole Model Fit Table for CIVU

	DF	Chi-Square	P-Value
Likelihood Ratio	16	94.476	<.0001

Logistic Likelihood Ratio Tests Table for CIVU

Logistic Likelihood Ratio Tests Table for CTVC						
	DF Chi-Square P-					
Reach	4	25.710	<.0001			
Elevation	2	7.154	.0280			

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	464	.937	495	.245	.6209	.629
Reach						
Oxbow-Hells Can. Res.	.032	.409	.079	.006	.9367	1.033
Oxbow-Brownlee	-1.533	.475	-3.225	10.401	.0013	.216
Oxbow-Downstream	.020	.433	.047	.002	.9625	1.021
Oxbow- Weiser	888	.629	-1.412	1.994	.1579	.411
Elevation						
below-above	558	.397	-1.407	1.980	.1594	.572
below-cross	-1.081	.432	-2.500	6.249	.0124	.339
Disturbance factors						
Alluvial	.273	.105	2.605	6.784	.0092	1.314
Flow zone	678	.153	-4.433	19.648	<.0001	.508
Livestock	201	.156	-1.289	1.662	.1974	.818
Fire	047	.248	189	.036	.8498	.954
Road	359	.134	-2.676	7.163	.0074	.699
Recreation	.040	.163	.243	.059	.8084	1.040
Trail	062	.190	330	.109	.7416	.939
Agriculture	190	.218	871	.758	.3840	.827
Residential	.122	.273	.446	.199	.6553	1.130
Other	.222	.223	.997	.993	.3190	1.249

Logistic Model Coefficients Table for CIVU

Logistic Whole Model Fit Table for CIVU

Logistic whole Model Fit Table for CTVU							
DF	Chi-Square	P-Value					
16	92.312	<.0001					
	DF	DF Chi-Square					

Logistic Likelihood Ratio Tests Table for CIVU

Logistic Likelihood Ratio Tests Table for CIVU							
DF Chi-Square P-Value							
Reach	4	22.052	.0002				
Elevation	2	6.720	.0347				

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	26.119	6.530	3.537	.0113
Elevation	2	11.621	5.811	3.148	.0496
Alluvial	1	1.323E-4	1.323E-4	7.165E-5	.9933
Flow zone	1	.055	.055	.030	.8640
Livestock	1	2.954	2.954	1.600	.2104
Fire	1	1.910E-4	1.910E-4	1.035E-4	.9919
Road	1	.690	.690	.374	.5431
Recreation	1	.029	.029	.015	.9014
Trail	1	.339	.339	.184	.6698
Agriculture	1	1.207	1.207	.654	.4217
Residential	1	.949	.949	.514	.4761
Residual	65	119.998	1.846		

ANOVA Table for ln net area

Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value
Oxbow, Hells Canyon Res.	1.010	1.503	.3482
Oxbow, Brownlee	1.615	1.900	.1363
Oxbow, Downstream	.519	1.486	.8727
Oxbow, Weiser	.471	2.154	.9749
Hells Canyon Res., Brownlee	.605	1.666	.8559
Hells Canyon Res., Downstream	491	1.173	.7790
Hells Canyon Res., Weiser	539	1.951	.9418
Brownlee, Downstream	-1.096	1.651	.3604
Brownlee, Weiser	-1.144	2.270	.6372
Downstream, Weiser	048	1.938	>.9999

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value
below, above	562	.860	.2693
below, cross	-1.006	1.203	.1199
above, cross	444	1.106	.6055

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	26.857	6.714	3.752	.0084
Elevation	2	14.081	7.040	3.934	.0245
Alluvial	1	1.910	1.910	1.068	.3054
Flow zone	1	1.430	1.430	.799	.3746
Livestock	1	.005	.005	.003	.9571
Fire	1	3.237	3.237	1.809	.1834
Road	1	4.338	4.338	2.424	.1244
Recreation	1	3.114E-8	3.114E-8	1.740E-8	.9999
Trail	1	1.883	1.883	1.052	.3088
Agriculture	1	1.601	1.601	.895	.3477
Residential	1	.414	.414	.231	.6323
ORV	1	.237	.237	.133	.7168
Residual	64	114.523	1.789		

VII. Conium maculatum

A. Tests for association between predictors and presence of weed species

1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for COMA4

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef
)
Constant	-2.880	.437	-6.587	43.388	<.0001	.056
Reach						
Oxbow-Hells Can. Res.	-1.335	.531	-2.516	6.328	.0119	.263
Oxbow-Brownlee	153	.370	413	.170	.6799	.858
Oxbow-Downstream	-3.143	1.068	-2.942	8.657	.0033	.043
Oxbow-Weiser	.405	.454	.893	.798	.3717	1.500
Hells Can. ResBrownlee	1.182	.472	2.505	6.277	.0122	3.262
Hells Can. ResDownstream	-1.808	1.098	-1.647	2.712	.0996	.164
Hells Can. ResWeiser	1.741	.516	3.373	11.375	.0007	5.700
Brownlee-Downstream	-2.990	1.030	-2.903	8.427	.0037	.050
Brownlee-Weiser	.558	.326	1.714	2.937	.0866	1.747
Downstream-Weiser	3.548	1.039	3.415	11.661	.0006	34.753
Elevation						
Below-above	.437	.350	1.247	1.555	.2124	1.548
Below-crosses	.798	.297	2.682	7.193	.0073	2.220
Disturbance factors						
Alluvial	063	.304	206	.042	.8370	.939
Flow zone	.076	.280	.271	.073	.7865	1.079
Livestock	239	.272	877	.769	.3804	.787
Fire	.033	.390	.085	.007	.9326	1.034
Road	271	.313	865	.748	.3870	.763
Recreation	343	.293	-1.172	1.374	.2411	.709
Trail	485	.638	761	.579	.4467	.616
Industrial	.325	1.098	.296	.088	.7671	1.385
Agriculture	.326	.346	.943	.888	.3459	1.385
Residential	.947	.444	2.133	4.550	.0329	2.577
Other	.416	.513	.811	.657	.4176	1.515

Logistic Whole Model Fit Table for COMA4

	DF	Chi-Square	P-Value
Likelihood Ratio	17	82.271	<.0001

Logistic Likelihood Ratio Tests Table for COMA4

	DF	Chi-Square	P-Value
Reach	4	38.651	<.0001
Elevation	2	7.531	.0232

	<u> </u>	0 (1 F	C C/CE	01:0		F (C 6
	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-2.837	.882	-3.217	10.350	.0013	.059
Reach						
Oxbow- Hells Can. Res.	-1.343	.536	-2.503	6.267	.0123	.261
Oxbow-Brownlee	189	.371	509	.259	.6107	.828
Oxbow-Downstream	-3.040	1.067	-2.850	8.120	.0044	.048
Oxbow-Weiser	.473	.444	1.064	1.131	.2875	1.604
Elevation						
Below-above	.445	.361	1.231	1.516	.2182	1.560
Below-crosses	.768	.301	2.550	6.503	.0108	2.156
Disturbance factors						
Alluvial	.085	.107	.795	.632	.4267	1.089
Flow zone	.035	.093	.377	.142	.7062	1.036
Livestock	067	.121	552	.305	.5809	.935
Fire	026	.189	137	.019	.8909	.974
Road	038	.101	374	.140	.7081	.963
Recreation	310	.151	-2.047	4.191	.0406	.734
Trail	159	.268	593	.352	.5531	.853
Industrial	.094	.385	.246	.060	.8060	1.099
Agriculture	.054	.107	.501	.251	.6162	1.055
Residential	.314	.164	1.912	3.657	.0558	1.368
Other	.172	.160	1.077	1.159	.2817	1.188

Logistic Model Coefficients Table for COMA4

Logistic Whole Model Fit Table for COMA4

	DF	Chi-Square	P-Value
Likelihood Ratio	17	83.059	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area	
Inclusion criteria: COMA4 from	Analna

Inclusion criteria:	: COMA4 fr	om Analnox4.svd			
	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	106.905	26.726	6.288	.0002
Elevation	2	32.375	16.187	3.808	.0267
Alluvial	1	2.266	2.266	.533	.4676
Flow zone	1	13.701	13.701	3.223	.0767
Livestock	1	.102	.102	.024	.8773
Fire	1	9.069	9.069	2.134	.1483
Road	1	19.123	19.123	4.499	.0373
Recreation	1	8.564	8.564	2.015	.1600
Trail	1	2.082	2.082	.490	.4862
presind	1	1.982	1.982	.466	.4969
Agriculture	1	.344	.344	.081	.7767
Residential	1	5.318	5.318	1.251	.2670
Other	1	3.685	3.685	.867	.3548
Residual	74	314.539	4.251		

ANOVA Coefficients Table for ln net area

Inclusion criteria: COMA4 from Analnox4.svd

	Coef	Std. Error	t-Test	P-Value
Flow zone	.917	.511	1.795	.0767
Road	1.537	.725	2.121	.0373

Scheffe for ln net area

Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	768	3.306	.9691	
Oxbow, Brownlee	.613	2.212	.9421	
Oxbow, Downstream	3.078	6.803	.7279	
Oxbow, Weiser	-2.512	2.268	.0216	S
Hells Canyon Res., Brownlee	1.381	2.847	.6732	
Hells Canyon Res., Downstream	3.846	7.035	.5640	
Hells Canyon Res., Weiser	-1.744	2.891	.4635	
Brownlee, Downstream	2.465	6.593	.8440	
Brownlee, Weiser	-3.125	1.523	<.0001	S
Downstream, Weiser	-5.590	6.612	.1411	

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below-above	680	1.430	.4972	
below-cross	-2.129	1.313	.0006	S
above-cross	-1.449	1.283	.0228	S

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	101.695	25.424	5.640	.0005
Elevation	2	28.690	14.345	3.183	.0472
Alluvial	1	1.903	1.903	.422	.5179
Flow zone	1	8.619	8.619	1.912	.1709
Livestock	1	.754	.754	.167	.6838
Fire	1	1.861	1.861	.413	.5225
Road	1	6.953	6.953	1.543	.2181
Recreation	1	.741	.741	.164	.6864
Trail	1	.178	.178	.039	.8430
Industrial	1	1.764	1.764	.391	.5335
Agriculture	1	.598	.598	.133	.7167
Residential	1	3.189	3.189	.708	.4030
Other	1	.790	.790	.175	.6768
Residual	74	333.550	4.507		

VIII. Convolvulus arvensis

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Tab	ole for COAR
---------------------------------	--------------

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.034	.410	-7.402	54.791	<.0001	.048
Reach						
Oxbow - Hells Can. Res.	112	.389	288	.083	.7735	.894
Oxbow-Brownlee	.527	.334	1.580	2.497	.1141	1.694
Oxbow-Downstream	.842	.407	2.069	4.282	.0385	2.322
Oxbow-Weiser	-1.526	.726	-2.102	4.419	.0355	.217
Hells CanBrownlee	.639	.297	2.150	4.624	.0315	1.895
Hells CanDownstream	.954	.363	2.628	6.907	.0086	2.597
Hells CanWeiser	-1.414	.697	-2.029	4.115	.0425	.243
Brownlee-Downstream	.315	.295	1.068	1.140	.2857	1.371
Brownlee-Weiser	-2.053	.660	-3.111	9.680	.0019	.128
Downstream-Weiser	-2.368	.683	-3.469	12.032	.0005	.094
Elevation						
below-above	729	.355	-2.053	4.213	.0401	.482
below-crosses	493	.276	-1.786	3.191	.0740	.611
Disturbance factors						
Alluvial	192	.237	810	.657	.4178	.826
Flow zone	.550	.283	1.941	3.766	.0523	1.733
Livestock	308	.245	-1.255	1.574	.2096	.735
Mining	1.549	1.228	1.261	1.591	.2072	4.708
Fire	-1.814	.738	-2.459	6.045	.0139	.163
Road	.675	.250	2.700	7.292	.0069	1.965
Recreation	.327	.221	1.477	2.182	.1397	1.387
Trail	519	.452	-1.147	1.317	.2512	.595
Industrial	247	1.177	210	.044	.8335	.781
Agriculture	.807	.473	1.707	2.912	.0879	2.242
Residential	483	.634	761	.580	.4464	.617
ORV	671	.771	870	.757	.3842	.511
Other	-1.392	1.031	-1.351	1.824	.1768	.249

Logistic Whole Model Fit Table for COAR

Logistic whole Model Fit Table for COAR					
DF Chi-Square P-Value					
19	87.784	<.0001			
	DF	DF Chi-Square			

Logistic Likelihood Ratio Tests Table for COAR

	DF	Chi-Square	P-Value
Reach	4	24.317	<.0001
Elevation	2	5.041	.0804

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-2.164	.981	-2.206	4.866	.0274	.115
Reach						
Oxbow - Hells Can. Res.	393	.398	986	.973	.3239	.675
Oxbow-Brownlee	.064	.340	.188	.035	.8511	1.066
Oxbow-Downstream	.563	.405	1.389	1.930	.1648	1.756
Oxbow-Weiser	-1.978	.755	-2.620	6.864	.0088	.138
Elevation						
below-above	310	.371	836	.699	.4033	.734
below-crosses	169	.289	584	.341	.5593	.845
Disturbance factors						
Alluvial	151	.089	-1.705	2.908	.0881	.859
Flow zone	.261	.097	2.687	7.218	.0072	1.298
Livestock	092	.115	802	.644	.4223	.912
Mining	.017	.543	.031	.001	.9750	1.017
Fire	611	.197	-3.104	9.637	.0019	.543
Road	.134	.091	1.477	2.182	.1397	1.143
Recreation	.173	.118	1.469	2.159	.1418	1.189
Trail	228	.186	-1.230	1.513	.2188	.796
Industrial	.059	.363	.162	.026	.8711	1.061
Agriculture	.149	.171	.873	.762	.3828	1.161
Residential	036	.202	178	.032	.8585	.965
ORV	.045	.268	.168	.028	.8664	1.046
Other	252	.223	-1.130	1.278	.2583	.778

Logistic Model Coefficients Table for COAR
--

Logistic Whole Model Fit Table for COAR					
	DF Chi-Square P-Value				
Likelihood Ratio	Likelihood Ratio 19 91.848 <.0001				

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	30.902	7.725	2.122	.0830
Elevation	2	57.719	28.859	7.927	.0006
Alluvial	1	4.212	4.212	1.157	.2845
Flow zone	1	2.074	2.074	.570	.4520
Livestock	1	2.777	2.777	.763	.3844
Fire	1	.371	.371	.102	.7503
Road	1	3.037	3.037	.834	.3631
Recreation	1	1.053	1.053	.289	.5918
Trail	1	15.478	15.478	4.252	.0416
Agriculture	1	1.399	1.399	.384	.5366
Residential	1	1.114	1.114	.306	.5813
Industrial	1	2.775	2.775	.762	.3845
Other	1	3.891	3.891	1.069	.3035
ORV	1	1.709	1.709	.469	.4947
Residual	108	393.169	3.640		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area Inclusion criteria: COAR from Analnox4.svd

merusion ernerna. COAR nom Anamox4.3vd						
	Coef	Std. Error	t-Test	P-Value		
Trail	1.817	.881	2.062	.0416		

Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	.557	2.177	.9577	
Oxbow, Brownlee	.810	1.804	.7393	
Oxbow, Downstream	2.414	2.092	.0142	S
Oxbow, Weiser	.151	3.830	>.9999	
Hells Canyon Res., Brownlee	.253	1.578	.9925	
Hells Canyon Res., Downstream	1.857	1.901	.0592	
Hells Canyon Res., Weiser	406	3.729	.9983	
Brownlee, Downstream	1.604	1.459	.0227	S
Brownlee, Weiser	659	3.525	.9866	
Downstream, Weiser	-2.264	3.680	.4500	

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below, above	859	1.111	.1636	
below, cross	-2.066	1.049	<.0001	S
above, cross	-1.208	1.317	.0798	

2. Effect of LEVELS of disturbances on population size.

ANOVA	Table f	for ln	net a	rea

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	27.735	6.934	1.879	.1194
Elevation	2	46.289	23.144	6.273	.0027
Alluvial	1	.004	.004	.001	.9732
Flow zone	1	4.353	4.353	1.180	.2799
Livestock	1	.020	.020	.005	.9417
Fire	1	6.775	6.775	1.836	.1783
Road	1	2.070	2.070	.561	.4555
Recreation	1	9.931	9.931	2.692	.1038
Trail	1	25.872	25.872	7.012	.0093
Agriculture	1	3.856	3.856	1.045	.3090
Residential	1	.126	.126	.034	.8537
ORV	1	.146	.146	.039	.8429
Mining	1	.362	.362	.098	.7546
Industrial	1	.478	.478	.130	.7196
Other	1	1.554	1.554	.421	.5177
Residual	107	394.801	3.690		

IX. Cynoglossum officinale

A. Tests for association between predictors and presence of weed species

1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for CYOF

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-1.903	.370	-5.138	26.395	<.0001	.149
Reach						
Oxbow - Hells Can. Res.	.148	.295	.500	.250	.6169	1.159
Oxbow-Brownlee	364	.285	-1.278	1.634	.2012	.695
Oxbow-Downstream	255	.323	790	.625	.4293	.775
Hells Can. ResBrownlee	512	.251	-2.040	4.163	.0413	.599
Hells Can. ResDownstream	403	.269	-1.497	2.241	.1344	.668
Brownlee-Downstream	.109	.252	.432	.187	.6657	1.115
Elevation						
Below-above	.655	.317	2.065	4.264	.0389	1.926
Below-crosses	.303	.315	.962	.925	.3362	1.354
Disturbance factors						
Alluvial	.344	.214	1.610	2.593	.1073	1.411
Flow zone	-1.920	.358	-5.362	28.750	<.0001	.147
Livestock	.331	.197	1.680	2.823	.0929	1.393
Fire	388	.331	-1.173	1.375	.2410	.678
Road	547	.234	-2.337	5.463	.0194	.578
Recreation	195	.202	966	.933	.3341	.822
Trail	.180	.317	.567	.322	.5706	1.197
Agriculture	119	.525	227	.052	.8201	.887
Residential	.371	.489	.760	.577	.4474	1.450
ORV	590	1.057	558	.311	.5770	.554

Logistic Whole Model Fit Table for CYOF

	DF	Chi-Square	P-Value
Likelihood Ratio	16	186.419	<.0001

Logistic Likelihood Ratio Tests Table for CYOF

	DF	Chi-Square	P-Value
Reach	4	41.783	<.0001
Elevation	2	5.566	.0618

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	602	.812	741	.549	.4586	.548
Reach						
Oxbow-Hells Can. Res.	.203	.303	.672	.451	.5018	1.225
Oxbow-Brownlee	374	.282	-1.327	1.760	.1846	.688
Oxbow-Downstream	378	.324	-1.166	1.360	.2436	.685
Elevation						
Below-above	.493	.338	1.460	2.130	.1444	1.637
Below-crosses	.218	.322	.676	.458	.4987	1.244
Disturbance factor						
Alluvial	.139	.082	1.699	2.886	.0893	1.149
Flow zone	672	.125	-5.396	29.122	<.0001	.511
Livestock	.202	.105	1.936	3.748	.0529	1.224
Fire	.023	.175	.132	.017	.8952	1.023
Road	244	.085	-2.860	8.181	.0042	.784
Recreation	148	.117	-1.263	1.594	.2067	.862
Trail	.111	.129	.866	.750	.3863	1.118
Agriculture	078	.189	413	.171	.6793	.925
Residential	.124	.189	.654	.428	.5132	1.132
ORV	548	.508	-1.077	1.160	.2814	.578

Logistic Model Coefficients Table for CYOF

Logistic Whole Model Fit Table for CYOF

	DF	Chi-Square	P-Value
Likelihood Ratio	16	198.127	<.0001

B. Tests for effect of predictors on population size

1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

Inclusion criteria: CYOF from Analnox4.svd

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	30.322	10.107	3.674	.0136
Elevation	2	29.854	14.927	5.426	.0053
Alluvial	1	5.587	5.587	2.031	.1561
Flow zone	1	.455	.455	.165	.6848
Livestock	1	1.804	1.804	.656	.4193
Fire	1	6.840	6.840	2.487	.1169
Road	1	.861	.861	.313	.5766
Recreation	1	2.386	2.386	.867	.3532
Trail	1	1.092	1.092	.397	.5295
Agriculture	1	9.004	9.004	3.273	.0724
Residential	1	.650	.650	.236	.6277
ORV	1	10.789	10.789	3.922	.0494
Residual	154	423.623	2.751		

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Agriculture	1.450	.801	1.809	.0724
ORV	3.489	1.762	1.980	.0494

Scheffe for ln net area

Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	.557	1.176	.6176	
Oxbow, Brownlee	.851	1.160	.2358	
Oxbow, Downstream	1.640	1.172	.0019	S
Hells Canyon Res., Brownlee	.294	.948	.8572	
Hells Canyon Res., Downstream	1.082	.962	.0201	S
Brownlee, Downstream	.789	.943	.1380	

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below-above	158	.982	.9239	
below-cross	-1.416	1.076	.0060	S
above-cross	-1.258	.723	.0002	S

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area Inclusion criteria: CYOF from Analnox4.svd

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	29.811	9.937	3.756	.0122
Elevation	2	29.599	14.800	5.594	.0045
Alluvial	1	4.879	4.879	1.844	.1765
Flow zone	1	.405	.405	.153	.6962
Livestock	1	4.710	4.710	1.780	.1841
Fire	1	14.590	14.590	5.514	.0201
Road	1	.813	.813	.307	.5802
Recreation	1	.604	.604	.228	.6335
Trail	1	.576	.576	.218	.6416
Agriculture	1	12.598	12.598	4.762	.0306
Residential	1	2.254	2.254	.852	.3574
ORV	1	19.604	19.604	7.409	.0072
Residual	154	407.462	2.646		

ANOVA Coefficients Table for ln net area Inclusion criteria: CYOF from Analnox4.svd

merusion ernerna. e i or moni Anamox4.svu						
	Coef	Std. Error	t-Test	P-Value		
Fire	.765	.326	2.348	.0201		
Agriculture	.656	.301	2.182	.0306		
ORV	2.256	.829	2.722	.0072		

X. Elaeagnus angustifolia

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
C						
Constant	-4.562	.713	-6.395	40.901	<.0001	.010
Reach						
Oxbow - Hells Can. Res.	-1.525	1.160	-1.315	1.728	.1887	.218
Oxbow-Brownlee	777	.720	-1.079	1.163	.2808	.460
Oxbow-Weiser	1.525	.651	2.345	5.498	.0190	4.597
Hells Can. ResBrownlee	.749	1.088	.688	.473	.4915	2.114
Hells Can. ResWeiser	3.050	1.041	2.930	8.588	.0034	21.124
Brownlee-Weiser	2.302	.507	4.540	20.616	<.0001	9.993
Elevation						
below-above	531	.673	788	.622	.4304	.588
below-crosses	.538	.492	1.095	1.198	.2736	1.713
Disturbance factors						
Flow zone	.520	.469	1.109	1.230	.2674	1.682

Logistic Model Coefficients Table for ELAN

Logistic Whole Model Fit Table for ELAN

	DF	Chi-Square	P-Value
Likelihood Ratio	7	41.095	<.0001

Logistic Likelihood Ratio Tests Table for ELAN

	DF	Chi-Square	P-Value
Reach	4	34.931	<.0001
Elevation	2	3.651	.1611

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model Coefficients Table for ELAN						
	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.543	.783	-5.801	33.653	<.0001	.011
Reach						
Oxbow - Hells Can. Res.	-1.525	1.160	-1.314	1.728	.1887	.218
Oxbow-Brownlee	768	.729	-1.053	1.110	.2922	.464
Oxbow-Downstream	-13.572	492.370	028	.001	.9780	1.276E-6
Oxbow-Weiser	1.522	.654	2.327	5.414	.0200	4.580
Elevation						
below-above	627	.675	930	.865	.3523	.534
below-crosses	.465	.490	.950	.903	.3420	1.592
Disturbance factors						
Flow zone	.108	.153	.701	.491	.4833	1.114

Logistic Whole Model Fit Table for ELAN

	DF	Chi-Square	P-Value
Likelihood Ratio	7	40.348	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	2.150	.717	.150	.9283
Elevation	2	3.145	1.572	.329	.7242
Flow zone	1	.523	.523	.109	.7448
Residual	17	81.268	4.780		

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	1.834	.611	.128	.9420
Elevation	2	2.695	1.347	.283	.7574
Flow zone	1	.719	.719	.151	.7025
Residual	17	81.072	4.769		

XI. Hypericum perforatum

A. Tests for association between predictors and presence of weed species

1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for HYPE

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.562	.556	-6.404	41.008	<.0001	.028
Reach						
Oxbow- Hells Can. Res.	.288	.387	.743	.552	.4574	1.334
Oxbow-Brownlee	-3.245	.788	-4.118	16.959	<.0001	.039
Oxbow-Downstream	2.315	.407	5.686	32.334	<.0001	10.126
Hells Can. ResBrownlee	-3.567	.769	-4.639	21.524	<.0001	.028
Hells Can. ResDownstream	2.040	.324	6.288	39.542	<.0001	7.68
Brownlee-Downstream	5.561	.742	7.494	56.167	<.0001	259.96
Elevation						
Below-above	.721	.475	1.519	2.308	.1287	2.05
Below-crosses	2.069	.451	4.586	21.031	<.0001	7.91
Above-crosses	1.367	.270	5.057	25.576	<.0001	3.92
Disturbance factors						
Flow zone	358	.395	907	.823	.3643	.69
Livestock	155	.246	631	.398	.5280	.85
Mining	1.709	1.193	1.432	2.052	.1520	5.52
Fire	.746	.378	1.974	3.898	.0483	2.10
Road	247	.325	759	.577	.4476	.78
Recreation	519	.260	-1.997	3.989	.0458	.59
Trail	.397	.338	1.175	1.382	.2398	1.48
Agriculture	424	.609	696	.484	.4865	.654
Residential	154	.696	221	.049	.8248	.85
Alluvial	110	.309	355	.126	.7227	.89
ORV	251	1.319	190	.036	.8493	.775

Logistic Whole Model Fit Table for HYPE

	DF	Chi-Square	P-Value
Likelihood Ratio	17	411.618	<.0001

Logistic Likelihood Ratio Tests Table for HYPE

	DF	Chi-Square	P-Value
Reach	4	262.982	<.0001
Elevation	2	40.940	<.0001

	Cash	Ctd Emer	Caaf/CE	Ch: Causan	D Value	E-m(Cash)
	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.254	.935	-3.478	12.100	.0005	.039
Reach						
Oxbow-Hells Can. Res.	.252	.399	.631	.398	.5281	1.286
Oxbow-Brownlee	-3.378	.792	-4.267	18.204	<.0001	.034
Oxbow-Downstream	2.197	.400	5.496	30.207	<.0001	8.997
Elevation						
Below-above	.227	.499	.455	.207	.6491	1.255
Below-crosses	1.685	.456	3.692	13.631	.0002	5.393
Disturbance factors						
Alluvial	.005	.113	.041	.002	.9670	1.005
Flow zone	178	.155	-1.152	1.326	.2495	.837
Livestock	083	.131	636	.404	.5249	.920
Mining	.423	.380	1.113	1.239	.2656	1.527
Fire	.701	.220	3.182	10.126	.0015	2.015
Road	083	.122	681	.464	.4957	.920
Recreation	499	.168	-2.975	8.851	.0029	.607
Trail	.110	.144	.767	.589	.4429	1.117
Agriculture	045	.235	192	.037	.8481	.956
Residential	219	.266	826	.683	.4087	.803

Logistic Model Coefficients Table for H	YPE
---	-----

Logistic Whole Model Fit Table for HYPE

	DF	Chi-Square	P-Value
Likelihood Ratio	16	424.554	<.0001

B. Tests for effect of predictors on population size

1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area Inclusion criteria: HYPE from Analnox4.svd

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	142.401	47.467	13.327	<.0001
Elevation	2	26.337	13.168	3.697	.0273
Alluvial	1	1.505	1.505	.423	.5167
Flow zone	1	5.275	5.275	1.481	.2257
Livestock	1	8.634	8.634	2.424	.1218
Mining	1	8.781	8.781	2.465	.1187
Fire	1	4.276	4.276	1.201	.2752
Road	1	3.227	3.227	.906	.3429
Recreation	1	6.359	6.359	1.785	.1837
Trail	1	7.794	7.794	2.188	.1414
Agriculture	1	.041	.041	.011	.9149
Residential	1	1.299	1.299	.365	.5470
ORV	1	2.743	2.743	.770	.3817
Residual	135	480.831	3.562		
Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	1.451	1.876	.1927	
Oxbow, Brownlee	3.481	4.081	.1254	
Oxbow, Downstream	-1.304	1.622	.1644	
Hells Canyon Res., Brownlee	2.030	3.926	.5452	
Hells Canyon Res., Downstream	-2.756	1.181	<.0001	S
Brownlee, Downstream	-4.786	3.811	.0070	S

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below-above	-1.500	1.560	.0622	
below-cross	-2.242	1.606	.0033	S
above-cross	742	.805	.0779	

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	112.315	37.438	10.277	<.0001
Elevation	2	28.881	14.440	3.964	.0212
Alluvial	1	4.571	4.571	1.255	.2646
Flow zone	1	.021	.021	.006	.9390
Livestock	1	1.981	1.981	.544	.4622
Mining	1	4.928	4.928	1.353	.2468
Fire	1	.417	.417	.114	.7356
Road	1	1.440	1.440	.395	.5306
Recreation	1	1.147	1.147	.315	.5757
Trail	1	.032	.032	.009	.9252
Agriculture	1	.719	.719	.197	.6576
Residential	1	.575	.575	.158	.6917
ORV	1	5.221	5.221	1.433	.2333
Residual	135	491.780	3.643		

XII. Lepidium latifolium

A. Tests for association between predictors and presence of weed species

1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for LELA
--

	Coef	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.028	-8.639	74.634	<.0001	.048
Reach					
Oxbow - Hells Can. Res.	089	281	.079	.7789	.915
Oxbow-Brownlee	719	-2.456	6.032	.0141	.487
Oxbow-Weiser	045	116	.014	.9073	.956
Hells Can. ResBrownlee	631	-2.393	5.727	.0167	.532
Hells Can. ResWeiser	.043	.125	.016	.9003	1.044
Brownlee-Weiser	.674	2.214	4.903	.0268	1.962
Elevation					
below-above	152	450	.203	.6526	.859
below-crosses	1.260	5.525	30.524	<.0001	3.525
above-crosses	1.412	4.794	22.981	<.0001	4.104
Disturbance factors					
Alluvial	.038	.173	.030	.8623	1.039
Flow zone	1.178	4.985	24.848	<.0001	3.247
Livestock	382	-1.611	2.595	.1072	.683
Fire	.475	1.417	2.007	.1566	1.607
Road	317	-1.335	1.783	.1818	.728
Recreation	.094	.418	.175	.6760	1.098
Trail	.008	.019	3.701E-4	.9847	1.008
Industrial	105	098	.010	.9222	.900
Agriculture	.330	.960	.922	.3370	1.39
Residential	.553	1.348	1.818	.1776	1.738
ORV	1.114	2.004	4.015	.0451	3.045
Other	.804	1.877	3.525	.0605	2.234

Logistic Whole Model Fit Table for LELA

	DF	Chi-Square	P-Value
Likelihood Ratio	18	150.194	<.0001

Logistic Likelihood Ratio Tests Table for LELA

	DF	Chi-Square	P-Value
Reach	4	46.317	<.0001
Elevation	2	46.195	<.0001

2. Test of effect of LEVEL of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.310	.774	-5.570	31.019	<.0001	.013
Reach						
Oxbow - Hells Can. Res.	112	.319	353	.124	.7243	.894
Oxbow-Brownlee	682	.295	-2.313	5.351	.0207	.506
Oxbow-Weiser	012	.392	032	.001	.9748	.988
Elevation						
below-above	230	.343	669	.448	.5033	.795
below-crosses	1.138	.232	4.895	23.963	<.0001	3.119
Disturbance factors						
Alluvial	.084	.081	1.037	1.076	.2996	1.087
Flow zone	.321	.077	4.148	17.203	<.0001	1.379
Livestock	174	.107	-1.631	2.661	.1029	.841
Fire	.182	.155	1.175	1.382	.2398	1.200
Road	069	.082	837	.700	.4028	.934
Recreation	.072	.113	.640	.410	.5221	1.075
Trail	.092	.152	.605	.366	.5452	1.096
Industrial	196	.390	502	.252	.6156	.822
Agriculture	.130	.109	1.198	1.434	.2311	1.139
Residential	.092	.148	.622	.387	.5337	1.097
ORV	.454	.225	2.022	4.090	.0431	1.575
Other	.191	.135	1.418	2.012	.1561	1.211

Logistic Model Coefficients Table for LELA

Logistic Whole Model Fit Table for LELA

	DF	Chi-Square	P-Value
Likelihood Ratio	18	140.253	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	111.923	37.308	13.431	<.0001
Elevation	2	56.828	28.414	10.229	<.0001
Alluvial	1	.431	.431	.155	.6942
Flow zone	1	.961	.961	.346	.5574
Livestock	1	.206	.206	.074	.7859
Fire	1	1.360	1.360	.490	.4854
Road	1	9.073	9.073	3.266	.0730
Recreation	1	2.309	2.309	.831	.3636
Trail	1	.312	.312	.112	.7382
Agriculture	1	2.080	2.080	.749	.3885
Residential	1	.269	.269	.097	.7563
Industrial	1	3.291	3.291	1.185	.2784
ORV	1	2.636	2.636	.949	.3318
Other	1	6.070	6.070	2.185	.1417
Residual	131	363.887	2.778		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area Inclusion criteria: LELA from Analnox4.svd

 Coef
 Std. Error
 t-Test
 P-Value

 Road
 -.719
 .398
 -1.807
 .0730

Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	1.468	1.318	.0220	S
Oxbow, Brownlee	-1.447	1.187	.0095	S
Oxbow, Weiser	-3.446	1.334	<.0001	S
Hells Canyon Res., Brownlee	-2.915	1.012	<.0001	S
Hells Canyon Res., Weiser	-4.914	1.181	<.0001	S
Brownlee, Weiser	-1.998	1.033	<.0001	S

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below, above	-2.115	1.143	<.0001	S
below, cross	-2.612	.727	<.0001	S
above, cross	496	1.107	.5418	

2. Effect of LEVELS of disturbances on population size.

ANOVA	Table for	ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	113.903	37.968	13.539	<.0001
Elevation	2	59.024	29.512	10.524	<.0001
Alluvial	1	.032	.032	.011	.9150
Flow zone	1	2.563	2.563	.914	.3409
Livestock	1	3.710	3.710	1.323	.2522
Fire	1	.001	.001	3.311E-4	.9855
Road	1	9.306	9.306	3.318	.0708
Recreation	1	1.216	1.216	.434	.5113
Trail	1	.067	.067	.024	.8770
Agriculture	1	.245	.245	.087	.7681
Residential	1	.172	.172	.061	.8046
Industrial	1	2.011	2.011	.717	.3987
ORV	1	.408	.408	.145	.7035
Other	1	4.126	4.126	1.471	.2273
Residual	131	367.369	2.804		

XIII. Linaria dalmatica

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-6.068	1.227	-4.947	24.473	<.0001	.002
Reach						
Hells Can. ResBrownlee	123	.533	230	.053	.8181	.885
Hells Can. ResDownstream	-1.073	.702	-1.529	2.336	.1264	.342
Brownlee-Downstream	950	.707	-1.345	1.809	.1787	.387
Elevation						
below-above	2.729	1.219	2.238	5.009	.0252	15.318
below-crosses	2.088	1.162	1.797	3.231	.0723	8.068
Disturbance factors						
Flow zone	106	.769	138	.019	.8899	.899

Logistic Model Coefficients Table for LIDA

Logistic Whole Model Fit Table for LIDA

	DF	Chi-Square	P-Value
Likelihood Ratio	7	25.254	.0007

Logistic Likelihood Ratio Tests Table for LIDA

	DF	Chi-Square	P-Value
Reach	4	13.464	.0092
Elevation	2	7.024	.0298

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model Coefficients Table for LIDA

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-5.755	1.424	-4.041	16.332	<.0001	.003
Reach						
Hells Can. ResBrownlee	097	.532	182	.033	.8560	.908
Hells Can. ResDownstream	-1.064	.702	-1.516	2.298	.1295	.345
Elevation						
below-above	2.528	1.254	2.015	4.061	.0439	12.525
below-crosses	1.954	1.178	1.658	2.748	.0974	7.054
Disturbance factors						
Flow zone	111	.267	416	.173	.6773	.895

Logistic Whole Model Fit Table for LIDA

	DF	Chi-Square	P-Value
Likelihood Ratio	7	25.416	.0006

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	2	1.191	.596	.136	.8744
Elevation	2	10.412	5.206	1.186	.3387
Flow zone	1	.184	.184	.042	.8411
Residual	12	52.657	4.388		

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	2	1.313	.656	.150	.8623
Elevation	2	9.654	4.827	1.103	.3633
Flow zone	1	.320	.320	.073	.7914
Residual	12	52.521	4.377		

XIV. Onopordum acanthium

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef
Constant	-3.345	.345	-9.691	93.909	<.0001	.03
Reach						
Oxbow - Hells Can. Res.	227	.317	715	.512	.4744	.79′
Oxbow-Brownlee	.617	.276	2.234	4.992	.0255	1.854
Oxbow-Downstream	104	.329	315	.099	.7529	.902
Oxbow-Weiser	.052	.377	.138	.019	.8903	1.05
Hells CanBrownlee	.844	.252	3.347	11.199	.0008	2.32
Hells CanDownstream	.123	.298	.413	.170	.6798	1.13
Hells CanWeiser	.278	.341	.816	.666	.4145	1.32
Brownlee-Downstream	721	.237	-3.039	9.234	.0024	.48
Brownlee-Weiser	565	.285	-1.985	3.942	.0471	.56
Downstream-Weiser	.155	.308	.504	.254	.6143	1.16
Elevation						
below-above	1.381	.268	5.161	26.637	<.0001	3.97
below-crosses	1.091	.248	4.394	19.308	<.0001	2.97
above-crosses	290	.175	-1.653	2.732	.0984	.74
Disturbance factors						
Alluvial	.310	.194	1.595	2.543	.1108	1.36
Flow zone	536	.220	-2.437	5.939	.0148	.58
Livestock	.339	.166	2.048	4.194	.0406	1.40
Mining	.271	1.214	.223	.050	.8235	1.31
Fire	.066	.232	.286	.082	.7748	1.06
Road	.243	.194	1.252	1.568	.2106	1.27
Recreation	136	.183	744	.554	.4568	.87
Trail	.357	.285	1.251	1.564	.2111	1.42
Industrial	.490	.855	.573	.329	.5665	1.63
Agriculture	.609	.277	2.202	4.848	.0277	1.83
Residential	.236	.364	.650	.422	.5157	1.26
ORV	.916	.444	2.064	4.261	.0390	2.49
Other	1.012	.314	3.220	10.368	.0013	2.75

Logistic Model	Coefficients	Table for	ONAC
----------------	--------------	-----------	------

Logistic	Whole Mod	del Fit Table	for ONAC

	DF	Chi-Square	P-Value
Likelihood Ratio	19	149.226	<.0001

Logistic Likelihood Ratio Tests Table for ONAC

	DF	Chi-Square	P-Value
Reach	4	18.024	.0012
Elevation	2	30.383	<.0001

2. Test of effect of LEVEL of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.938	.710	-6.952	48.337	<.0001	.007
Reach						
Oxbow - Hells Can. Res.	213	.319	667	.445	.5046	.808
Oxbow-Brownlee	.622	.271	2.294	5.264	.0218	1.862
Oxbow-Downstream	148	.324	457	.209	.6476	.862
Oxbow-Weiser	.023	.376	.062	.004	.9505	1.024
Elevation						
below-above	1.348	.279	4.831	23.341	<.0001	3.851
below-crosses	1.090	.253	4.306	18.544	<.0001	2.973
Disturbance factors						
Alluvial	.128	.073	1.768	3.125	.0771	1.137
Flow zone	206	.076	-2.709	7.340	.0067	.814
Livestock	.169	.079	2.147	4.608	.0318	1.184
Mining	039	.419	094	.009	.9249	.961
Fire	.009	.128	.069	.005	.9449	1.009
Road	.016	.066	.245	.060	.8062	1.016
Recreation	005	.095	053	.003	.9579	.995
Trail	.106	.116	.916	.839	.3596	1.112
Industrial	.347	.263	1.320	1.743	.1867	1.415
Agriculture	.195	.088	2.204	4.857	.0275	1.215
Residential	.172	.127	1.346	1.812	.1783	1.187
ORV	.312	.191	1.636	2.675	.1019	1.366
Other	.339	.100	3.399	11.553	.0007	1.403

Logistic Model Coefficients Table for ONAC

Logistic [*]	Whole	Model	Fit Table	for ONAC	
-----------------------	-------	-------	-----------	----------	--

Logistic whole wi	Juer In		10
	DF	Chi-Square	P-Value
Likelihood Ratio	19	149.259	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	40.767	10.192	2.669	.0332
Elevation	2	114.994	57.497	15.059	<.0001
Alluvial	1	11.268	11.268	2.951	.0872
Flow zone	1	2.456	2.456	.643	.4235
Livestock	1	3.396	3.396	.889	.3467
Fire	1	.222	.222	.058	.8096
Road	1	.029	.029	.008	.9304
Recreation	1	1.445	1.445	.378	.5391
Trail	1	.971	.971	.254	.6146
Agriculture	1	.011	.011	.003	.9571
Residential	1	14.702	14.702	3.851	.0510
Industrial	1	7.496	7.496	1.963	.1626
ORV	1	4.614	4.614	1.208	.2729
Other	1	.145	.145	.038	.8456
Mining	1	31.101	31.101	8.146	.0047
Residual	218	832.359	3.818		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Alluvial	608	.354	-1.718	.0872
Mining	5.740	2.011	2.854	.0047

Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value
Oxbow, Hells Canyon Res.	.389	1.739	.9750
Oxbow, Brownlee	.158	1.437	.9983
Oxbow, Downstream	.574	1.651	.8834
Oxbow, Weiser	968	1.716	.5470
Hells Canyon Res., Brownlee	231	1.257	.9880
Hells Canyon Res., Downstream	.185	1.497	.9974
Hells Canyon Res., Weiser	-1.357	1.568	.1286
Brownlee, Downstream	.416	1.131	.8606
Brownlee, Weiser	-1.126	1.224	.0896
Downstream, Weiser	-1.542	1.469	.0339 S

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below, above	326	.985	.7178	
below, cross	-1.828	1.015	<.0001	S
above, cross	-1.502	.674	<.0001	S

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	38.535	9.634	2.615	.0362
Elevation	2	116.839	58.420	15.855	<.0001
Alluvial	1	13.591	13.591	3.689	.0561
Flow zone	1	15.004	15.004	4.072	.0448
Livestock	1	1.342	1.342	.364	.5468
Fire	1	10.165	10.165	2.759	.0982
Road	1	.473	.473	.128	.7205
Recreation	1	.579	.579	.157	.6923
Trail	1	1.907	1.907	.518	.4726
Agriculture	1	.035	.035	.010	.9222
Residential	1	11.712	11.712	3.179	.0760
Industrial	1	10.809	10.809	2.934	.0882
ORV	1	9.776	9.776	2.653	.1048
Other	1	.010	.010	.003	.9582
Mining	1	33.004	33.004	8.958	.0031
Residual	218	803.230	3.685		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area Inclusion criteria: ONAC from Analnox4.svd

	Coef	Std. Error	t-Test	P-Value
Alluvial	252	.131	-1.921	.0561
Flow zone	.265	.131	2.018	.0448
Fire	.366	.220	1.661	.0982
Residential	.381	.214	1.783	.0760
Industrial	.748	.437	1.713	.0882
Mining	1.881	.628	2.993	.0031

XV. Phalaris arundinacea

A. Tests for association between predictors and presence of weed species

1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for PHAR
--

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-5.957	1.095	-5.440	29.588	<.0001	.003
Reach						
Oxbow - Hells Can. Res.	2.581	1.048	2.464	6.071	.0137	13.213
Oxbow-Brownlee	2.287	1.022	2.238	5.008	.0252	9.847
Oxbow-Downstream	1.046	1.176	.889	.790	.3740	2.846
Oxbow-Weiser	3.364	1.060	3.175	10.078	.0015	28.907
Hells CanBrownlee	294	.309	950	.903	.3420	.745
Hells CanDownstream	-1.535	.652	-2.355	5.547	.0185	.215
Hells CanWeiser	.783	.394	1.989	3.955	.0467	2.188
Brownlee-Downstream	-1.241	.616	-2.014	4.055	.0440	.289
Brownlee-Weiser	1.077	.326	3.309	10.947	.0009	2.936
Downstream-Weiser	2.318	.654	3.543	12.555	.0004	10.158
Elevation						
below-above	-1.634	.500	-3.267	10.674	.0011	.195
below-crosses	-1.605	.377	-4.257	18.119	<.0001	.201
above-crosses	.029	.562	.052	.003	.9587	1.030
Disturbance factors						
Alluvial	491	.273	-1.802	3.247	.0716	.612
Flow zone	2.528	.422	5.985	35.825	<.0001	12.527
Livestock	281	.337	833	.693	.4050	.755
Fire	390	.762	511	.262	.6091	.677
Road	078	.358	218	.047	.8277	.925
Recreation	639	.254	-2.517	6.334	.0118	.528
Trail	.811	.484	1.677	2.812	.0936	2.250
Industrial	.938	1.209	.776	.602	.4380	2.555
Agriculture	.361	.416	.867	.751	.3862	1.434
Residential	352	.679	518	.269	.6042	.703
ORV	768	1.068	719	.517	.4721	.464
Other	.363	.674	.538	.290	.5904	1.437

Logistic	Whole	Model	Fit '	Table	for	PHAR
Logiotic	111010	11100001	1 10	I uoic	101	1 1 11 11 /

	DF	Chi-Square	P-Value
Likelihood Ratio	18	242.389	<.0001

Logistic Likelihood Ratio Tests Table for PHAR

	DF	Chi-Square	P-Value
Reach	4	31.645	<.0001
Elevation	2	28.804	<.0001

2. Test of effect of LEVEL of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.895	1.352	-3.622	13.117	.0003	.007
Reach						
Oxbow - Hells Can. Res.	2.355	1.050	2.243	5.031	.0249	10.534
Oxbow-Brownlee	1.877	1.028	1.826	3.334	.0679	6.536
Oxbow-Downstream	.769	1.177	.653	.426	.5138	2.157
Oxbow-Weiser	3.129	1.062	2.945	8.676	.0032	22.843
Elevation						
below-above	-1.787	.489	-3.651	13.327	.0003	.167
below-crosses	-1.575	.378	-4.163	17.333	<.0001	.207
Disturbance factors						
Alluvial	166	.099	-1.666	2.776	.0957	.847
Flow zone	.538	.105	5.109	26.106	<.0001	1.712
Livestock	146	.136	-1.075	1.156	.2824	.864
Fire	335	.223	-1.504	2.261	.1326	.715
Road	138	.132	-1.044	1.090	.2966	.871
Recreation	259	.140	-1.854	3.438	.0637	.772
Trail	.451	.190	2.379	5.662	.0173	1.570
Industrial	.266	.400	.665	.442	.5063	1.305
Agriculture	054	.144	372	.138	.7099	.948
Residential	.007	.218	.033	.001	.9736	1.007
ORV	.108	.300	.360	.130	.7185	1.114
Other	.003	.220	.014	2.084E-4	.9885	1.003

Logistic Model Coefficients Table for PHAR

Logistic	Whole	Model Fit	Table	for PHAR
----------	-------	-----------	-------	----------

	DF	Chi-Square	P-Value
Likelihood Ratio	18	228.088	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	46.257	11.564	3.076	.0198
Elevation	2	13.460	6.730	1.790	.1726
Alluvial	1	4.066	4.066	1.081	.3010
Flow zone	1	.258	.258	.069	.7941
Livestock	1	13.431	13.431	3.572	.0618
Fire	1	2.415	2.415	.642	.4249
Road	1	.434	.434	.115	.7348
Recreation	1	5.639	5.639	1.500	.2237
Trail	1	1.117	1.117	.297	.5870
Agriculture	1	29.319	29.319	7.798	.0063
Residential	1	10.001	10.001	2.660	.1062
Industrial	1	.100	.100	.027	.8710
ORV	1	.534	.534	.142	.7071
Other	1	26.954	26.954	7.169	.0087
Residual	95	357.188	3.760		

ANOVA Table for ln net area

ANOVA Coefficients Table for In net area

Inclusion criteria: PHAR from Analnox4.svd

	Coef	Std. Error	t-Test	P-Value
Livestock	1.239	.655	1.890	.0618
Agriculture	2.037	.729	2.792	.0063
Residential	-2.143	1.314	-1.631	.1062
Other	-3.123	1.167	-2.677	.0087

Scheffe for ln net area Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	.334	6.242	.9999	
Oxbow, Brownlee	921	6.141	.9942	
Oxbow, Downstream	.145	7.034	>.9999	
Oxbow, Weiser	-2.862	6.200	.7169	
Hells Canyon Res., Brownlee	-1.255	1.567	.1851	
Hells Canyon Res., Downstream	190	3.772	>.9999	
Hells Canyon Res., Weiser	-3.197	1.783	<.0001	S
Brownlee, Downstream	1.065	3.601	.9290	
Brownlee, Weiser	-1.942	1.387	.0014	S
Downstream, Weiser	-3.007	3.701	.1733	

Scheffe for ln net area Effect: Elevation

Crit. Diff. 2.028	P-Value .4159	
2.028	.4159	
1.601	<.0001	S
2.490	.0829	

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	31.443	7.861	2.181	.0769
Elevation	2	16.524	8.262	2.292	.1066
Alluvial	1	5.480	5.480	1.520	.2206
Flow zone	1	.288	.288	.080	.7782
Livestock	1	1.529	1.529	.424	.5165
Fire	1	12.029	12.029	3.337	.0709
Road	1	1.053	1.053	.292	.5902
Recreation	1	11.973	11.973	3.322	.0715
Trail	1	2.704	2.704	.750	.3885
Agriculture	1	23.497	23.497	6.519	.0123
Residential	1	7.922	7.922	2.198	.1415
Industrial	1	4.964E-4	4.964E-4	1.377E-4	.9907
ORV	1	12.748	12.748	3.537	.0631
Other	1	17.093	17.093	4.742	.0319
Residual	95	342.397	3.604		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Fire	.607	.332	1.827	.0709
Recreation	488	.268	-1.823	.0715
Agriculture	.764	.299	2.553	.0123
ORV	1.374	.731	1.881	.0631
Other	874	.401	-2.178	.0319

XVII. Taeniatherum caput-medusae

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.212	.590	-5.448	29.677	<.0001	.040
Reach						
Oxbow- Hells Can. Res.	312	.345	904	.818	.3659	.732
Oxbow-Brownlee	178	.302	588	.346	.5562	.837
Oxbow-Weiser	774	.467	-1.659	2.752	.0971	.461
Hells Can. ResBrownlee	.134	.305	.440	.194	.6597	1.144
Hells Can. ResWeiser	462	.451	-1.024	1.049	.3058	.630
Brownlee-Weiser	597	.395	-1.512	2.285	.1306	.551
Elevation						
Below-above	1.560	.551	2.830	8.010	.0047	4.758
Below-crosses	1.851	.543	3.411	11.636	.0006	6.367
Above-crosses	.291	.218	1.339	1.792	.1807	1.338
Disturbance factors						
Alluvial	521	.293	-1.778	3.160	.0755	.594
Flow zone	-3.679	1.027	-3.584	12.845	.0003	.025
Livestock	1.039	.238	4.365	19.057	<.0001	2.825
Fire	.253	.318	.795	.632	.4267	1.288
Road	252	.263	956	.914	.3391	.778
Recreation	538	.266	-2.020	4.079	.0434	.584
Trail	.385	.497	.774	.599	.4389	1.469
Industrial	.338	1.114	.304	.092	.7613	1.403
Agriculture	-1.051	.583	-1.803	3.252	.0714	.350
Residential	328	.761	432	.186	.6661	.720
ORV	-15.570	1353.563	012	1.323E-4	.9908	1.730E-7

Logistic Whole Model Fit Table for TACA

	DF	Chi-Square	P-Value
Likelihood Ratio	17	260.802	<.0001

Logistic Likelihood Ratio Tests Table for TACA

	DF	Chi-Square	P-Value
Reach	4	67.795	<.0001
Elevation	2	17.705	.0001

2. Test of effect of LEVEL of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	13.454	985.725	.014	1.863E-4	.9891	<u>696803.354</u>
Reach	15.454	965.725	.014	1.005L-4	.9091	090003.334
	224	252	(())	120	5091	702
Reach- HellCanRes.	234	.353	662	.438	.5081	.792
Oxbow-Brownlee	222	.302	737	.544	.4609	.801
Oxbow-Weiser	760	.466	-1.629	2.653	.1033	.468
Elevation						
Below-above	1.437	.578	2.485	6.174	.0130	4.209
Below-crosses	1.889	.555	3.402	11.574	.0007	6.613
Disturbance factors						
Alluvial	337	.127	-2.664	7.097	.0077	.714
Flow zone	911	.201	-4.538	20.594	<.0001	.402
Livestock	.597	.120	4.982	24.824	<.0001	1.817
Fire	.184	.214	.860	.740	.3898	1.202
Road	116	.092	-1.253	1.571	.2100	.891
Recreation	222	.148	-1.506	2.269	.1320	.801
Trail	.150	.212	.706	.498	.4804	1.162
Industrial	.230	.348	.662	.438	.5080	1.259
Agriculture	238	.171	-1.391	1.935	.1642	.788
Residential	332	.355	935	.874	.3497	.717
ORV	-15.748	985.724	016	2.552E-4	.9873	1.448E-7

Logistic Model Coefficients Table for TACA
--

Logistic Whole Model Fit Table for TACA

	DF	Chi-Square	P-Value
Likelihood Ratio	17	275.739	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.
- ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	39.751	13.250	2.567	.0586
Elevation	2	96.365	48.183	9.336	.0002
Alluvial	1	7.237	7.237	1.402	.2391
Flow zone	1	.874	.874	.169	.6816
Livestock	1	5.152	5.152	.998	.3201
Fire	1	.711	.711	.138	.7113
Road	1	2.815	2.815	.545	.4619
Recreation	1	6.698	6.698	1.298	.2573
Trail	1	.371	.371	.072	.7893
presind	1	1.493	1.493	.289	.5919
Agriculture	1	4.242	4.242	.822	.3668
Residential	1	2.719	2.719	.527	.4696
Other	1	13.871	13.871	2.688	.1042
Residual	101	521.245	5.161		

Scheffe for ln net area

Effect: Reach

	Mean Diff.	Crit. Diff.	P-Value	
Oxbow, Hells Canyon Res.	1.953	1.885	.0390	S
Oxbow, Brownlee	.830	1.584	.5312	
Oxbow, Weiser	3.699	2.368	.0004	S
Hells Canyon Res., Brownlee	-1.123	1.560	.2481	
Hells Canyon Res., Weiser	1.746	2.352	.2229	
Brownlee, Weiser	2.870	2.118	.0030	S

Scheffe for ln net area Effect: Elevation

	Mean Diff.	Crit. Diff.	P-Value	
below-above	167	2.931	.9900	
below-cross	-2.652	2.910	.0821	
above-cross	-2.484	1.063	<.0001	S

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area Inclusion criteria: TACA from Analnox4.svd

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	3	50.371	16.790	3.443	.0196
Elevation	2	106.596	53.298	10.930	<.0001
Alluvial	1	8.072	8.072	1.655	.2012
Flow zone	1	20.748	20.748	4.255	.0417
Livestock	1	1.626	1.626	.333	.5649
Fire	1	.154	.154	.032	.8592
Road	1	1.062	1.062	.218	.6418
Recreation	1	.736	.736	.151	.6985
Trail	1	.592	.592	.121	.7282
Industrial	1	2.010	2.010	.412	.5224
Agriculture	1	3.884	3.884	.797	.3742
Residential	1	.507	.507	.104	.7478
Other	1	22.242	22.242	4.561	.0351
Residual	101	492.497	4.876		

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Flow zone	989	.480	-2.063	.0417
Other	-2.040	.955	-2.136	.0351

XVII. Tamarix sp.

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-3.673	.528	-6.953	48.339	<.0001	.025
Reach						
Brownlee-Weiser	1.173	.362	3.239	10.493	.0012	3.231
Elevation						
below-above	-2.786	1.058	-2.633	6.931	.0085	.062
below-crosses	-2.073	.619	-3.350	11.221	.0008	.126
above-crosses	.714	1.172	.609	.370	.5428	2.041
Disturbance factors						
Flow zone	1.276	.521	2.452	6.010	.0142	3.584

Logistic Model Coefficients Table for TAMAR

Logistic Whole Model Fit Table for TAMAR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	117.358	<.0001

Logistic Likelihood Ratio Tests Table for TAMAR

	DF	Chi-Square	P-Value
Reach	4	49.794	<.0001
Elevation	2	25.710	<.0001
Flow zone	1	7.501	.0062

2. Test of effect of LEVEL of disturbance on weed presence/absence.

Logistic Model Coefficients Table for TAMAR

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-20.309	1554.528	013	1.707E-4	.9896	1.514E-9
Reach						
Oxbow-Downstream	.630	1970.339	3.199E-4	1.023E-7	.9997	1.878
Elevation						
below-above	-2.808	1.054	-2.663	7.092	.0077	.060
below-crosses	-2.090	.618	-3.382	11.440	.0007	.124
Disturbance factors						
Flow zone	.374	.148	2.524	6.369	.0116	1.454

Logistic Whole Model Fit Table for TAMAR

	DF	Chi-Square	P-Value
Likelihood Ratio	7	116.982	<.0001

B. Tests for effect of predictors on population size

1. Test for effect of PRESENCE of disturbance types on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	1	7.640	7.640	1.299	.2612
Elevation	2	20.625	10.312	1.753	.1863
Flow zone	1	5.008	5.008	.851	.3617
Residual	40	235.269	5.882		

2. Effect of LEVELS of disturbances on population size.

ANOVA Table for ln net area

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	1	9.485	9.485	1.622	.2101
Elevation	2	21.681	10.840	1.854	.1698
Flow zone	1	6.401	6.401	1.095	.3017
Residual	40	233.876	5.847		

XVIII. Tribulus terrestris

- A. Tests for association between predictors and presence of weed species
- 1. Test of PRESENCE of disturbance types on weed presence/absence.

Logistic Model Coefficients Table for TRTE
--

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-4.344	.510	-8.521	72.614	<.0001	.013
Reach						
Oxbow-Hells Can. Res.	.230	.353	.651	.423	.5152	1.258
Oxbow-Brownlee	.233	.357	.654	.428	.5129	1.263
Oxbow-Downstream	823	.632	-1.301	1.693	.1932	.439
Oxbow-Weiser	423	.749	565	.319	.5723	.655
Elevation						
Below-above	.903	.398	2.268	5.146	.0233	2.467
Below-crosses	.204	.362	.564	.318	.5729	1.227
Disturbance factors						
Alluvial	484	.322	-1.504	2.261	.1327	.616
Flow zone	.169	.357	.473	.224	.6363	1.184
Livestock	991	.319	-3.107	9.654	.0019	.371
Mining	1.419	1.576	.901	.811	.3677	4.134
Fire	102	.394	257	.066	.7968	.903
Road	1.139	.288	3.953	15.625	<.0001	3.123
Recreation	1.173	.308	3.814	14.545	.0001	3.232
Trail	792	.540	-1.466	2.149	.1427	.453
Industrial	.337	1.049	.321	.103	.7481	1.401
Agriculture	-1.110	1.124	988	.976	.3232	.329
Other	626	.759	825	.680	.4095	.535

Logistic Whole Model Fit Table for TRTE

Logistic whole would fit rable for TKTE						
	DF	Chi-Square	P-Value			
Likelihood Ratio	17	128.296	<.0001			

Logistic Likelihood Ratio Tests Table for TRTE

	DF	Chi-Square	P-Value
Reach	4	5.129	.2744
Elevation	2	7.496	.0236

2. Test of effect of LEVEL of disturbance on weed presence/absence.

	Coef	Std. Error	Coef/SE	Chi-Square	P-Value	Exp(Coef)
Constant	-2.550	1.097	-2.325	5.404	.0201	.078
Reach						
Oxbow- Hells CanRes.	079	.374	212	.045	.8325	.924
Oxbow-Brownlee	.123	.356	.346	.120	.7294	1.131
Oxbow-Downstream	501	.632	793	.629	.4276	.606
Oxbow-Weiser	279	.751	372	.138	.7100	.756
Elevation						
Below-above	.445	.440	1.010	1.021	.3124	1.560
Below-crosses	.007	.392	.018	3.332E-4	.9854	1.007
Disturbance factors						
Alluvial	147	.120	-1.225	1.501	.2205	.863
Flow zone	091	.126	722	.521	.4705	.913
Livestock	310	.154	-2.014	4.058	.0440	.733
Mining	.475	.450	1.057	1.117	.2906	1.609
Fire	731	.230	-3.186	10.152	.0014	.481
Road	.531	.097	5.452	29.721	<.0001	1.700
Recreation	.498	.140	3.552	12.620	.0004	1.646
Trail	400	.215	-1.858	3.451	.0632	.670
Industrial	.125	.306	.407	.166	.6839	1.133
Agriculture	803	.521	-1.542	2.377	.1232	.448
Other	280	.230	-1.218	1.483	.2233	.755

Logistic Model Coefficients Table for TRTE

Logistic Whole Model Fit Table for TRTE

	DF	Chi-Square	P-Value
Likelihood Ratio	17	170.635	<.0001

- B. Tests for effect of predictors on population size
- 1. Test for effect of PRESENCE of disturbance types on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	12.661	3.165	.757	.5564
Elevation	2	14.444	7.222	1.727	.1846
Alluvial	1	18.896	18.896	4.520	.0367
Flow zone	1	.230	.230	.055	.8151
Livestock	1	5.722	5.722	1.369	.2456
Mining	1	3.758	3.758	.899	.3461
Fire	1	9.769	9.769	2.337	.1305
Road	1	1.360	1.360	.325	.5701
Recreation	1	.596	.596	.143	.7068
Trail	1	.232	.232	.055	.8146
Industrial	1	3.792	3.792	.907	.3439
Agriculture	1	.006	.006	.002	.9689
Other	1	2.612	2.612	.625	.4317
Residual	77	321.909	4.181		

ANOVA Table for ln net area Inclusion criteria: TRTE from Analnox4.svd

ANOVA Coefficients Table for ln net area

	Coef	Std. Error	t-Test	P-Value
Alluvial	-1.798	.846	-2.126	.0367

Scheffe for ln net area Effect: Elevation

below-above -1.774 1.273 .0036 S below-cross -2.830 1.444 <.0001 S above cross 1.056 1.273 1244		Mean Diff.	Crit. Diff.	P-Value	
	below-above	-1.774	1.273	.0036	S
1056 1 273 12/4	below-cross	-2.830	1.444	<.0001	S
above-cross -1.050 1.275 .1244	above-cross	-1.056	1.273	.1244	

2. Effect of LEVELS of disturbances on population size.

	DF	Sum of Squares	Mean Square	F-Value	P-Value
Reach	4	13.065	3.266	.802	.5275
Elevation	2	19.662	9.831	2.414	.0961
Alluvial	1	7.153	7.153	1.756	.1889
Flow zone	1	.283	.283	.069	.7929
Livestock	1	5.926	5.926	1.455	.2313
Fire	1	19.385	19.385	4.760	.0321
Road	1	.203	.203	.050	.8240
Recreation	1	5.915	5.915	1.453	.2318
Trail	1	.001	.001	1.738E-4	.9895
Agriculture	1	.065	.065	.016	.8994
Industrial	1	2.917	2.917	.716	.4000
Mining	1	4.646	4.646	1.141	.2887
Residual	78	317.631	4.072		

ANOVA Table for ln net area

ANOVA Coefficients Table for ln net area Inclusion criteria: TRTE from Analnox4.svd

	Coef	Std. Error	t-Test	P-Value
Fire	.859	.413	2.079	.0409

Appendix 7: Proportion of Sites for Each Weed Species with Disturbance Types

Proportion of sites for each species with disturbance types.

Species	Alluvial	Flowzone	Livestock	Mining	Fire	Road	Recreation	Trail	Industrial	Agriculture	Residential	ORV	Other
Aegilops cylindrica	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
Agropyron repens	0.29	0.14	0.29	0.00	0.43	0.57	0.86	0.14	0.00	0.00	0.14	0.14	0.14
Ambrosia artemisiifolia	0.24	0.30	0.27	0.00	0.03	0.48	0.76	0.09	0.00	0.00	0.06	0.00	0.00
Amorpha fruticosa	0.32	0.91	0.18	0.00	0.04	0.15	0.70	0.04	0.00	0.02	0.02	0.01	0.01
Cardaria draba	0.18	0.20	0.59	0.00	0.11	0.36	0.45	0.05	0.00	0.21	0.11	0.00	0.02
Centaurea diffusa	0.00	0.00	0.00	0.00	0.17	1.00	0.67	0.00	0.00	0.00	0.00	0.00	0.00
Chondrilla juncea	0.29	0.06	0.59	0.00	0.18	0.00	0.41	0.06	0.00	0.00	0.00	0.00	0.00
Cirsium arvense	0.20	0.27	0.29	0.00	0.16	0.16	0.24	0.04	0.00	0.39	0.02	0.00	0.06
Cirsium vulgare	0.30	0.16	0.20	0.00	0.04	0.17	0.42	0.09	0.00	0.04	0.02	0.00	0.04
Convolvulus arvensis	0.23	0.66	0.23	0.01	0.02	0.31	0.61	0.05	0.01	0.05	0.02	0.02	0.01
Conium maculatum	0.17	0.41	0.28	0.00	0.11	0.23	0.32	0.03	0.01	0.24	0.09	0.00	0.05
Crupina vulgaris	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cuscuta sp.	0.00	0.10	0.10	0.00	0.00	0.60	0.40	0.00	0.00	0.10	0.00	0.00	0.00
Cyperus esculentus	0.43	1.00	0.00	0.00	0.00	0.00	0.86	0.00	0.00	0.00	0.00	0.00	0.00
Cynoglossum officinale	0.23	0.08	0.42	0.00	0.08	0.25	0.42	0.09	0.00	0.03	0.04	0.01	0.00
Daucus carota	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Elaeagnus angustifolia	0.08	0.54	0.21	0.00	0.04	0.21	0.29	0.00	0.04	0.25	0.04	0.00	0.00
Equisetum arvense	0.67	1.00	0.11	0.00	0.00	0.00	0.56	0.11	0.00	0.00	0.00	0.00	0.00
Euphorbia esula	0.33	1.00	0.00	0.00	0.33	0.00	0.00	0.00	0.00	0.33	0.00	0.00	0.00
Hypericum perforatum	0.13	0.13	0.34	0.01	0.13	0.16	0.38	0.14	0.00	0.03	0.02	0.01	0.00
Kochia scoparia	0.07	0.14	0.43	0.00	0.50	0.50	0.50	0.00	0.00	0.07	0.00	0.00	0.36
Lepidium latifolium	0.27	0.63	0.23	0.00	0.10	0.29	0.53	0.06	0.01	0.13	0.06	0.03	0.05
Linaria dalmatica	0.21	0.16	0.42	0.00	0.16	0.68	0.63	0.11	0.00	0.00	0.00	0.21	0.11
Lythrum salicaria	0.38	0.92	0.15	0.00	0.00	0.08	0.69	0.08	0.00	0.00	0.00	0.00	0.00
Onopordum acanthium	0.21	0.21	0.47	0.00	0.16	0.36	0.47	0.09	0.01	0.13	0.05	0.04	0.08
Phalaris arundinacea	0.23	0.93	0.11	0.00	0.02	0.11	0.38	0.06	0.01	0.11	0.03	0.01	0.03
Polygonum cuspidatum	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
Potentilla recta	0.00	0.00	0.38	0.00	0.05	0.05	0.24	0.19	0.00	0.05	0.00	0.00	0.00
Salvia aethiopis	0.20	0.00	0.00	0.00	0.00	0.50	0.40	0.00	0.00	0.00	0.00	0.00	0.00
Taeniatherum caput-medusae	0.15	0.01	0.61	0.00	0.17	0.35	0.39	0.05	0.01	0.03	0.02	0.00	0.01
Tamarix pentandra	0.29	0.89	0.07	0.00	0.02	0.11	0.33	0.02	0.00	0.09	0.00	0.09	0.04
Tribulus terrestris	0.15	0.34	0.16	0.01	0.11	0.69	0.82	0.04	0.02	0.01	0.00	0.00	0.02
Average	0.20	0.35	0.29	0.00	0.10	0.29	0.49	0.05	0.00	0.07	0.02	0.02	0.03

Appendix 8: Rare Plant Observation Forms

(This appendix is contained in a separate volume. If you wish to review this appendix, please contact Gary Holmstead at Idaho Power Company.)