

Reliability & Capacity Assessment Update

2023 Integrated Resource Plan

Dr. Andrés Valdepeña Delgado System Planning Engineer Shelby McNeilly Resource Planning Engineer

Topics

Reliability & Capacity Methodologies Overview

- Integrated Resource Plan Relevance
- Loss of Load Expectation
- Effective Load Carrying Capability

2023 Integrated Resource Plan Preliminary Results

- Reliability Threshold & Planning Reserve Margin
- Resource Capacity Contribution
- Western Resource Adequacy Program Modeling

Helpful Acronyms

Acronym	Meaning	Acronym	N
СССТ	Combined Cycle Combustion Turbine	LOLP	L
CSPP	Cogeneration & Small Power Production	LTCE	L
DR	Demand Response	L&R	L
EFORd	Equivalent Forced Outage Rate During Demand	MW	N
ELCC	Effective Load Carrying Capability	PRM	Ρ
ELR	Energy Limited Resource	R-CAT	R
ESS	Energy Storage System	SCCT	S
IRP	Integrated Resource Plan	VER	V
LOLE	Loss of Load Expectation	WRAP	V

Acronym	Meaning
LOLP	Loss of Load Probability
LTCE	Long-Term Capacity Expansion
L&R	Load & Resource
MW	Megawatt
PRM	Planning Reserve Margin
R-CAT	Reliability & Capacity Assessment Tool
SCCT	Simple Cycle Combustion Turbine
VER	Variable Energy Resource
WRAP	Western Resource Adequacy Program

Acronyms Used in the Integrated Resource Plan

Energy Storage Update

• Hemingway

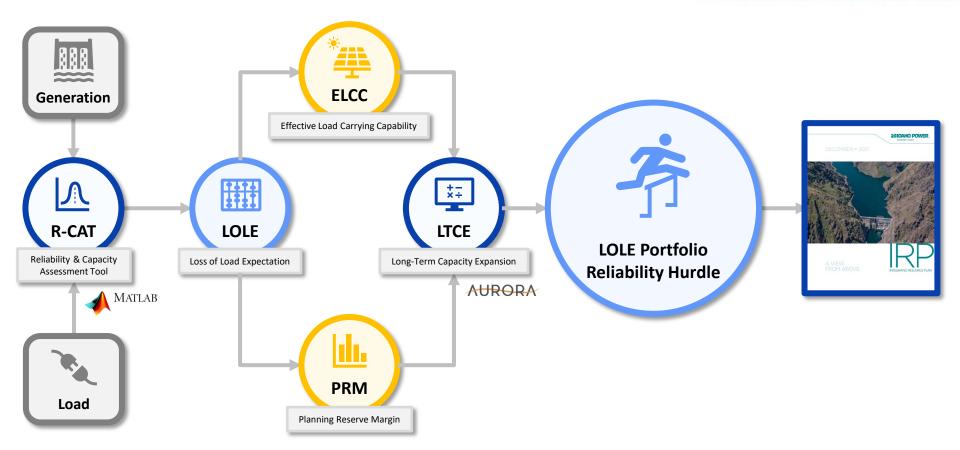
- Black Mesa
- Weiser
- Elmore
- Filer
- Melba

Reliability & Capacity Methodologies Overview

IRP Educational Resources

Home > Energy and the Environment > Energy > Planning and Electrical Projects > Our 20-Year Plan > Educational Resources

IRP Questions and Responses
Educational Resources
Transmission and Resource


Idaho Power has compiled these resources to help those participating in our *Integrated Resource Plan* process or anyone who wants to know more about how their energy is generated and delivered. We will add links, presentations and videos as they become available.

A Deep Dive into How Idaho Power Assesses Reliability & Capacity in the IRP

Educational Resources - Idaho Power

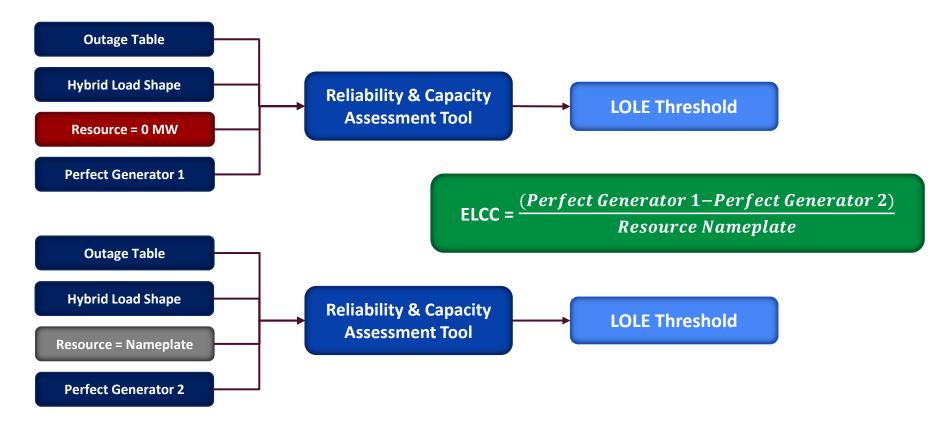
IRP Relevance

Reliability Definitions

Loss of Load Probability

LOLP: the probability of system peak or hourly demand exceeding the available generating capacity during a given period

Loss of Load Expectation


LOLE: the expected number of days per time period for which the available generation capacity is insufficient to serve the demand at least once per day

$$LOLP = P(G_i - L_i)$$
Generation available Net load at hour "i"

$$LOLE = \sum_{d=1}^{D} \max[_{i=1}^{H} (LOLP_i)]$$

Modeling Breakdown Baseload Resources Coal & Gas • Run of River Hydro with Storage ٠ Transmission • Variable Energy Resources Net Load **Equivalent Forced** Solar & Wind • Monthly **Outage Rate** Capacities **During Demand Energy Limited Resources Cogeneration & Small Power Production Energy Storage System** • **Demand Response** Outage Hybrid Table Hybrid Load Loss of Load Expectation System **Adjusted Load** Shape Calculation

ELCC Calculation Overview

Capacity Contribution Example

DEMONSTRATION PURPOSES ONLY

EXISTING SOLAR EFFECTIVE LOAD CARRYING CAPABILITY CALCULATION BREAKDOWN EXAMPLE

	Perfect Capacity (MW) without Existing Solar	Perfect Capacity (MW) with Existing Solar	ELCC (MW)	ELCC (%)
Test Year 1	340	50	290	66.5%
Test Year 2	260	20	240	55.0%
Test Year 3	270	55	215	49.3%
Test Year 4	255	10	245	56.2%
Test Year 5	350	100	250	57.3%
Test Year 6	460	230	230	52.7%
Average ELCC of the 6 Test Years for Existing Solar Example:			56.2%	

2023 IRP Preliminary Results

Flexible Generation

Available Capacity = Seasonal Rating *(1 - EFORd)

Existing Idaho Power Flexible Resources	Highest Risk Month Nameplate Capacity (MW)	EFORd	Available Capacity (MW)
Hydro with Storage	1,100	4.55%	1,050
Coal	488	9.30%	443
Gas CCCT	312	4.06%	299
Gas SCCT	771	9.23%-10.15%	699

Variable & Energy Limited Resources

Existing Idaho Power Variable & Energy Limited Resources	Value (MW)	Capacity Contribution (MW)
Run of River Hydro	268	268
Cogeneration & Small Power Production	146	146
Demand Response	340	144
Wind	725	135
Solar	436	245
Solar + 4-Hour Battery Storage (1:1)	40	39
Solar + 4-Hour Battery Storage (1:0.6)	100	92
4-Hour Battery Storage	103	95

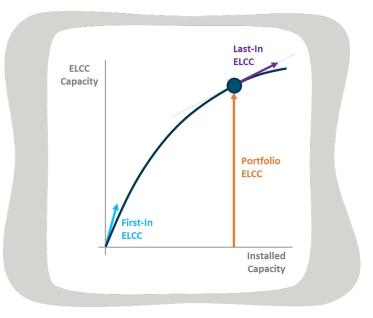
Total Capacity = 750 MW

Reliability Threshold & PRM

PRELIMINARY RESULTS Based on 2024 L&R

	Capacity Contribution (MW)	
2024 Forecasted 70 th Percentile Peak Load	3,830	
	1 050	
Hydro with Storage	1,050	
Coal	443	
Gas	998	
Run of River Hydro	268	
Variable & Energy Limited Resources	750	
Cogeneration & Small Power Production	146	
Emergency Transmission	188	
Resource Need	463	
2024 Total Generation	~4,307	
Planning Reserve Margin	12.44%	
Reliability Threshold	0.1 event-days/year	

$$PRM = \left| 1 - \left(\frac{Generation}{Load} \right) \right|$$


$$PRM = \left| 1 - \left(\frac{4,307}{3,830} \right) \right| \approx 12.44\%$$

Last-In ELCC

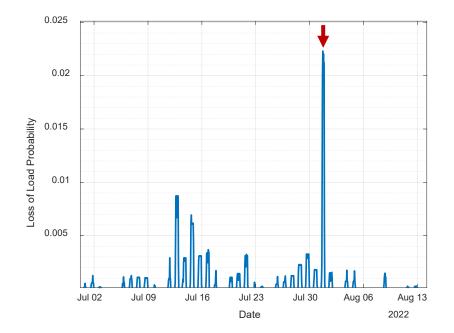
- Definition of Last-In ELCC
 - The marginal ELCC of each individual resource when taken in context of the full portfolio

Portfolio ELCC:	Existing Solar	56.2%
Last-In ELCC:	¹ Additional 100 MW Solar	13.0%

¹ Considers 100 MW of solar added after the signed solar projects

Source: N. Schlag, Z. Ming, A. Olson, L. Alagappan, B. Carron, K. Steinberger, and H. Jiang, "Capacity and Reliability Planning in the Era of Decarbonization: Practical Application of Effective Load Carrying Capability in Resource Adequacy," Energy and Environmental Economics, Inc., Aug. 2020

Marginal ELCC


Resource	ELCC	Notes
Solar	13.0%	Considers 100 MW of solar added after the signed solar projects
Wind (Idaho)	15.7%	Historical Idaho wind data utilized to create future shape
Wind (Wyoming)	26.0%	Simulated Wyoming wind data utilized to create future shape
4-Hour Battery Storage	85.8%	4-hour stand-alone battery storage projects
8-Hour Battery Storage	93.2%	8-hour stand-alone battery storage projects
Demand Response	21.7%	Represents an additional 50 MW of demand response

WRAP Modeling Methodology

PRELIMINARY RESULTS Based on 2024 L&R

- 1. Find the day of highest risk in each of the six test years
- 2. Add 100 MW of perfect capacity to the identified highest risk day (available for 24-hours)
- 3. Recalculate the annual capacity need
- 4. Solve for the overall reduction in capacity need

WRAP Benefit = 14 MW starting 2027

WRAP Modeling Example

DEMONSTRATION PURPOSES ONLY

	0 MW WRAP	14 MW WRAP
2024 Forecasted 70 th Percentile Peak Load	3,830	3,830
Available Generation	~3,844	~3,844
Resource Need	463	449
2024 Total Generation	~4,307	~4,293
Planning Reserve Margin	12.44%	12.07%
Reliability Threshold	0.1 event-days/year	