

Or, "How I Learned to Postpone Projects Without Worrying"



Marc Patterson, Senior Engineer

# **Project Deferral**



What is it?

When is it considered?

How is it implemented?

#### **Projects Drivers & Solutions**

- Planned load exceeds equipment capacity
  - Load growth
- Obsolete equipment
  - Additional functionality required
  - End of useful life
- Project solution based on need and long-term financial impact
  - Replace equipment (larger capacity, more functions, new life)
  - Additional equipment (move new load, add functions)

Alternatives to Traditional Project? aka "Non-Wires Alternative"

Meets Load Growth or Other Need

Delays Traditional Project Build Meets Goal of Low-Cost Alternative

# **Project Alternatives**

# **Cost-Benefit Analysis**

#### **Financial Impact to Postponed Projects**

- Inflation increases costs of the delayed project
  - Wages and other expenses go up

- Future project's present worth is lower due to the cost of capital
- Delay in revenue requirement (cost of capital)
- Inflation is generally smaller than the cost of capital; net benefit to delay spending





PRESENT WORTH

#### **Deferral Value**



Project present worth (PW) costs:

Based on need date and project cost

Deferred project PW costs:

Based on deferral date and future project costs

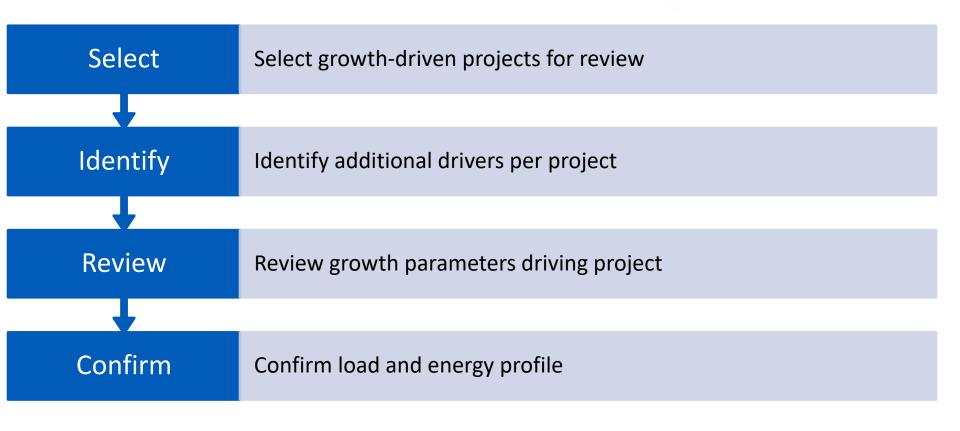
**Deferral Value = Project PW Costs – Deferred PW Costs** 

# What Projects Can't Be Deferred?



#### Bad candidates

- Replacement of damaged or obsolete equipment
- Mandatory relocations (i.e., highway widening)
- System additions for new customers
  - Line extension to new manufacturing facility
  - Line tap into new subdivision


# What Projects Can Be Deferred?

#### Good candidates

- Growth projects
  - Dependent on growth rate (slower growth is better)
  - Dependent on load and energy profile



# **Filtering Potential Projects**



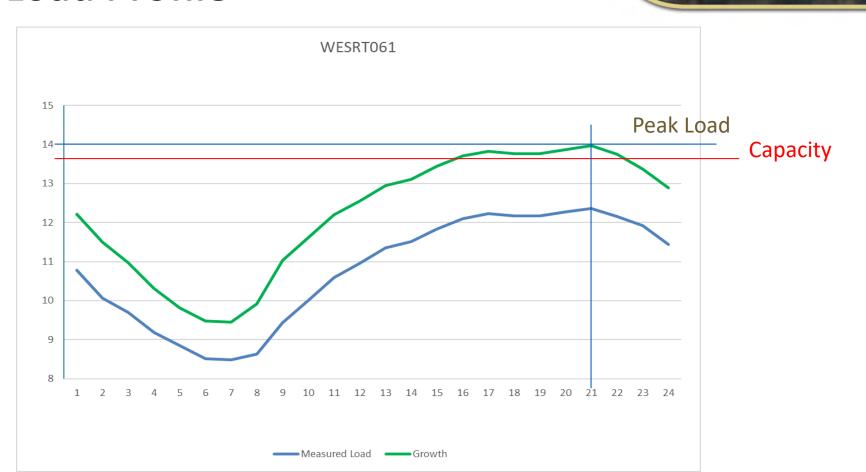
# **Project Selection Steps**

| Timeframe | Determine desired deferral time period                   |
|-----------|----------------------------------------------------------|
| Size      | Select size of storage or storage + solar needed         |
| Land      | Determine potential for land and connection requirements |
| Load      | Validate capability to meet critical loading needs       |

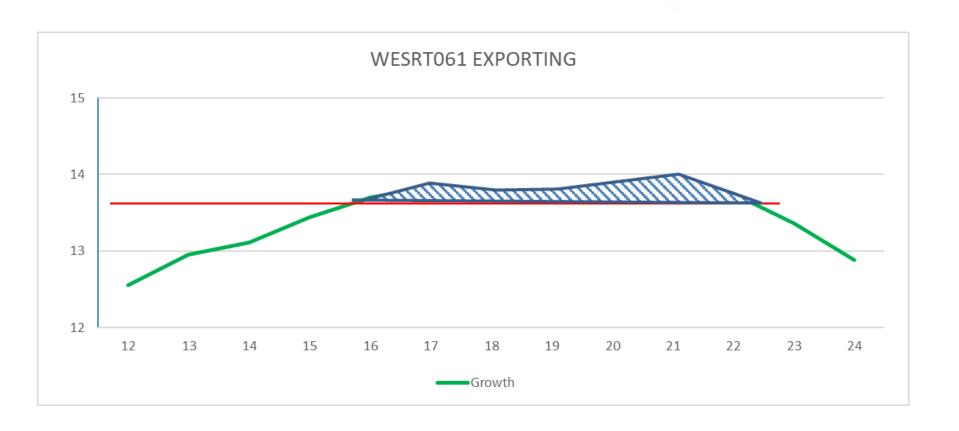
# **Example Project Review**

Peak occurs summer at 9 p.m.

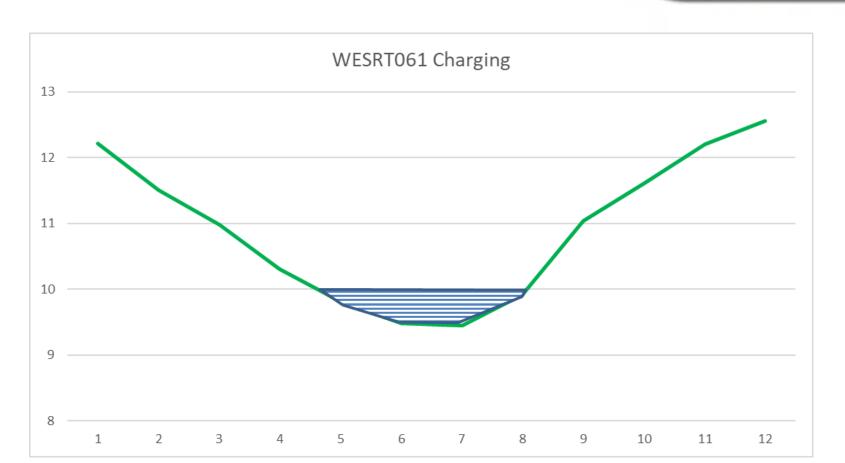
Large single load added; otherwise, slow growth <0.85%


Land area available for storage

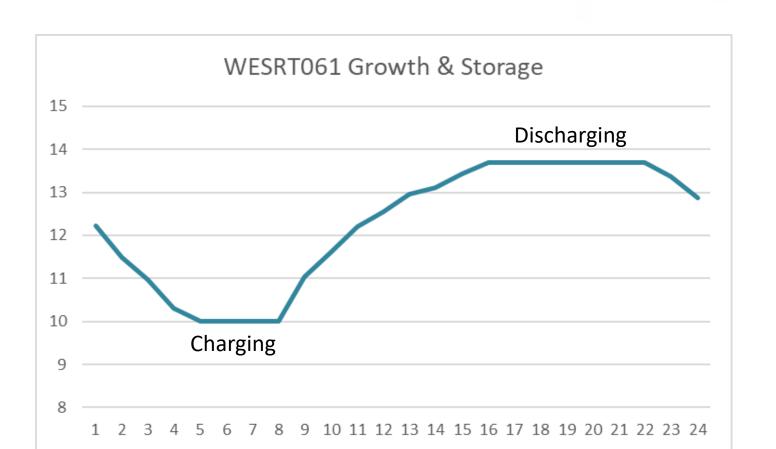
Project cost = \$968,037 (in 2023 dollars)


## **Load Profile**




# **Load Profile**




# **Storage Peak Shaving**

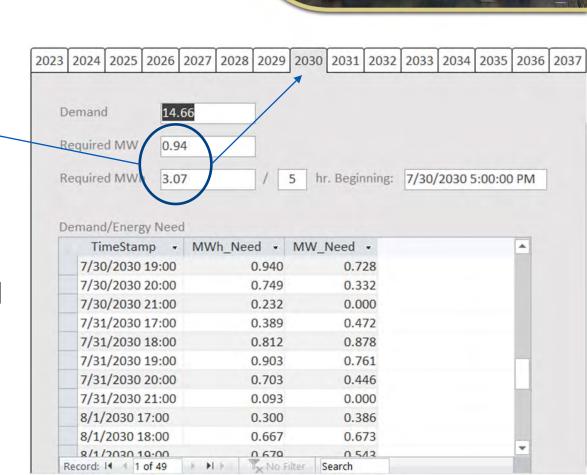


# **Storage Recharging**



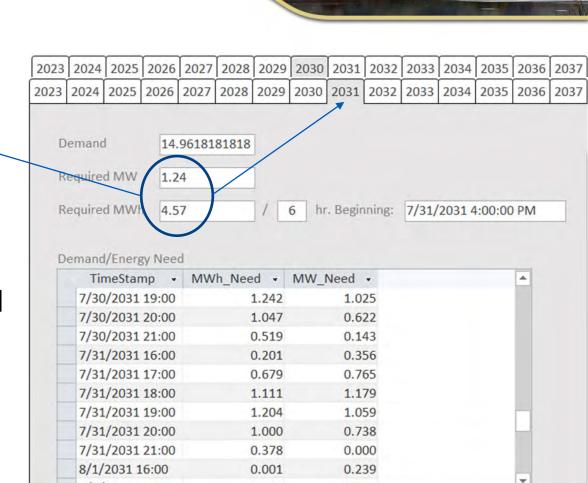
# **Load Profile With Storage**




#### **Deferral Timeline**

- Estimate energy profile with load growth for future years
- Compare storage daily export/import energy required
  - Does the system have capacity to recharge storage?
  - Is storage capacity adequate for peak reduction required?
  - When is the system unable to fully recharge the storage?

 Future project need date determined by when load exceeds storage ability to prevent overload


#### **Deferral Limit**

- Storage 0.96 MW; 4Hr
   (3.8 MWh)
- Compare storage daily export/import energy required for each year
- Establish project deferral date



#### **Deferral Limit**

- Storage 0.96 MW; 4Hr
   (3.8 MWh)
- Compare storage daily export/import energy required for each year
- Establish project deferral date



## **Deferral Value Example**

- A. Determine present worth (PW) of traditional project
- B. Determine PW of deferred traditional project

Deferral value (2023 Dollars) = 
$$A - B$$

Ability to defer WESRT061 project from 2023 to 2031

Deferral value PW (2023 Dollars) = \$299,695

# **Other Potential Projects**

|      |                            |                     | Project         | Years    | Deferral   | Battery |
|------|----------------------------|---------------------|-----------------|----------|------------|---------|
| Year | <b>Project Description</b> | <b>Battery Cost</b> | Costs           | Deferred | Value      | MW      |
| 2025 | HDSP Transformer           | \$ 2,354,642        | \$<br>1,622,984 | 5        | \$ 377,350 | 2.0     |
| 2026 | <b>HPVY Transformer</b>    | \$ 11,595,761       | \$<br>1,432,863 | 2        | \$ 143,916 | 10.0    |
| 2024 | MDRS Transformer           | \$ 18,811,961       | \$<br>1,985,397 | 2        | \$ 199,412 | 15.0    |
| 2025 | STAR Transformer           | \$ 11,773,213       | \$<br>2,318,548 | 3        | \$ 442,357 | 10.0    |
| 2023 | STRD Transformer           | \$ 6,634,457        | \$<br>1,834,918 | 3        | \$ 269,385 | 5.0     |
| 2023 | WESR Transformer           | \$ 1,326,569        | \$<br>968,037   | 8        | \$ 299,695 | 1.0     |

## **T&D Deferral Impact on IRP**

- If the IRP selects storage as a resource
  - The T&D deferral value at specific locations and dates will advise placement
    - Storage size limited to local area capacity
    - Yearly limits for number of locations
  - Storage costs will advise placement
    - Costs are size dependent (per megawatt cost, smaller projects > large projects)

T&D deferral value has the potential to lower the overall cost of storage.

# **T&D Deferral – Energy Efficiency**

Energy Efficiency
Measure Cost

T&D Deferral

Avoided Cost of Capacity

Avoided Cost of Energy

# **T&D Deferral – Energy Efficiency**



Aurora Model

T&D Analysis

No Market

Arbitrage/Energy

**T&D Deferral** 

**Line Loss Reduction** 

**Regulation Reserves** 

Aurora Model

T&D Analysis

No Market

Arbitrage/Energy

**Regulation Reserves** 

**T&D Deferral** 

**Line Loss Reduction** 

Aurora Model

**T&D** Analysis

No Market

Arbitrage/Energy

**Regulation Reserves** 

**T&D** Deferral

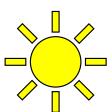
**Line Loss Reduction** 

Aurora Model

**T&D** Analysis

No Market

Arbitrage/Energy


**Regulation Reserves** 

**T&D** Deferral

**Line Loss Reduction** 

# **Solar Hosting Capacity**

- Eventually a saturation point will be reached (similar to some areas in California)
- Steps that increase hosting capacity
  - Recent smart inverter settings requirement
  - Integrated volt var optimization
- Saturation does not limit demand forecast in current IRP

