

Idaho Power 2022 Potential Study Update

Date: May 4, 2022 Prepared for: Energy Efficiency Advisory Group (EEAG)

Agenda

- AEG Introduction
- Study Objectives
- ⊘ Energy Efficiency
 - Overview of Methodology
 - Draft Non-Residential Results
 - IRP Bundling Approach Review
- ⊘ Demand Response
 - Overview of Methodology

AEG Introduction

Eli Morris Project Director

Neil Grigsby EE Project Manager

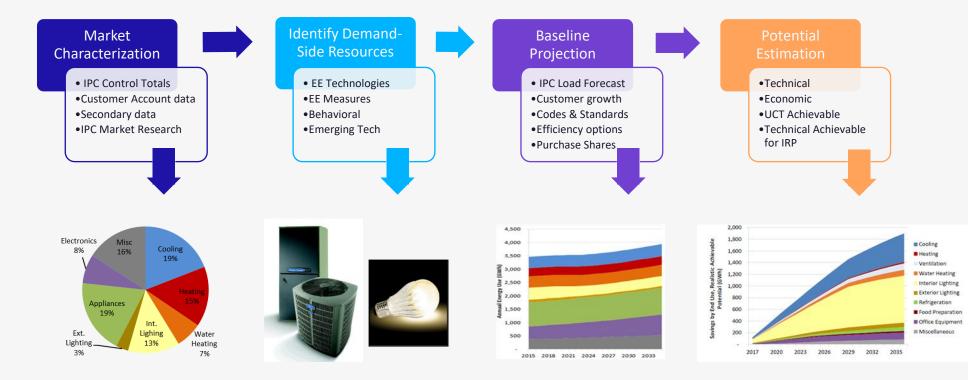
Maggie Buffum DR Project Manager

MERC Midwest: NIPSCO * Ameren Illinois* Omaha Public Power District* Ameren Missouri * Peoples' Gas/ North Shore Gas* Black Hills Power * Spire Missouri West: Citizens Energy Regional & National: State of Michigan Empire District Electric * Midcontinent ISO * Avista Energy * Sunflower Electric EEI/IEE * BPA * Indianapolis P&L* Indiana & Michigan Utilities Vectren Energy * EPRI Cascade Natural Gas * Westar Energy FERC Chelan PUD Kansas City Power & Light Cheyenne LFP* Colorado Electric* Cowlitz PUD * HECO Idaho Power* Northeast: Inland P&L * LADWP Berkshire Gas NV Energy Central Hudson G&E* Oregon Trail EC Con Edison of NY ⁴ PacifiCorp* Efficiency Maine* PNGC Liberty Utilities * PG&E * New Jersey BPU Orange & Rockland * Portland General Electric Public Service New Mexico * PECO Energy Seattle City Light * **PSEG Long Island** State of Hawaii * Rockland Electric Unitil State of New Mexico Tacoma Power * Xcel/SPS Key South: Two or more studies Kentucky Power* OG&E **Bold** = Both Market Assessment and Program Planning & Design work Southern Company / Georgia Power Italics = Only Program Planning & Design work Spire Mississippi State of Maryland - EmPOWER * As of January 2022 TVA

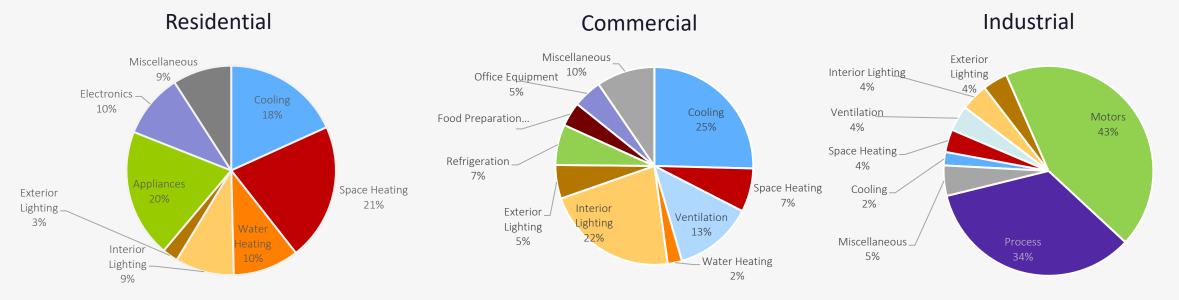
◎ 60 potential studies in last 5 years, many of these in the Pacific Northwest

Study Objectives

- Efficiently leverage the framework and data developed for the 2020 Potential study to estimate long-term energy efficiency potential
- 2. Incorporate updated Idaho Power data and insights to understand how customers from each sector use energy and where opportunities for energy savings exist
- 3. Use potential estimates to support future resource planning efforts in Idaho Power's 2022 Integrated Resource Plan



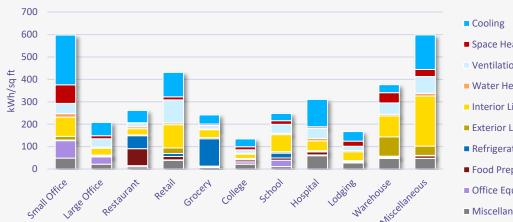
Methodology and Data Sources

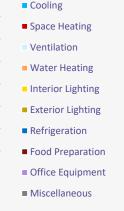

Overview of AEG's Energy Efficiency Modeling Approach

Market Characterization

- ⊘ Define energy-consumption characteristics in the base year of the study (2021)
- ✓ Incorporates Idaho Power's actual consumption and customer counts to develop "Control Totals"
- Grounds the analysis in Idaho Power data and provides enough detail to project assumptions forward and develop a baseline energy projection
- After separating electric consumption into sectors and segments, it is allocated to specific end uses and technologies

Base-year sector-level consumption by end-use:


Applied Energy Group, Inc. | appliedenergygroup.com Applied Energy Group, Inc. | appliedenergygroup.com

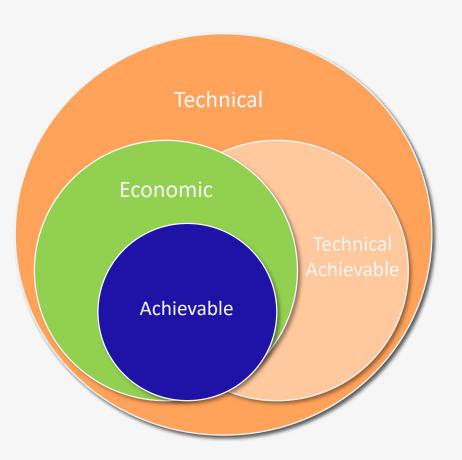

Market Characterization

Base-year sector-level consumption by building type:

- Intensity by building type is shown by end use \bigcirc
- Average use per building has decreased in certain segments (Office, Schools, Grocery) \odot
- Average use in Industrial building types overall have increased from previous study \odot

Commercial

Industrial



Levels of Potential

We estimate the following levels of potential:

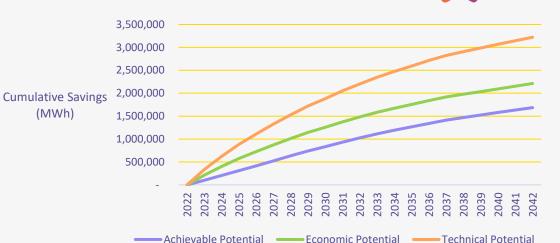
- ✓ Technical: theoretical maximum where everyone chooses the efficient option when equipment fails regardless of cost.
 - **Technical Achievable** provides an additional perspective into the EE potential landscape and is calculated by applying customer adoption curves directly to technical potential, rather than to the economic potential.
- Economic is a subset of technical potential that includes only <u>cost-effective</u> measures. Cost-effectiveness screening is performed under the UCT test.
- ✓ Achievable is a subset of economic potential that accounts for achievable participation within utility programs as well as non-utility mechanisms, such as regional initiatives and market transformation.

Key Data Sources

Idaho Power Data

- Customer account data including Standard Industrial Classification (SIC) codes
- All customer classes energy totals and forecast
- ⊘ 2022 Residential Energy Use Study
- ✓ 2020 CPA conducted by AEG served as a starting point for many measure characterizations and applicable market/adoption rate assumptions
- Current Idaho Power Technical Reference Manual and recent program accomplishments

Additional Data Sources:


- ᢙ Benchmarking/comparison:
 - NEEA's Residential and Commercial Building Stock Assessments (2014 and 2019)
 - US Energy Information Administration (EIA) Manufacturing Energy Consumption Survey (MECS)
- ⊘ Projections
 - US EIA Annual Energy Outlook (AEO) reference case forecast (equipment stock turnover assumptions)
 - Northwest Power and Conservation Council measure adoption ramp rates

Draft Non-Residential Potential Results

Potential Summary of Non-Res Sectors

- ✓ Non-Residential Achievable Potential savings in the first year of 100 GWh, 1.0% of baseline usage
 - Consistent with Idaho Power's 2022 program savings goal and recent accomplishments
- ✓ Achievable Potential savings reach 13.3% of baseline usage by 2042, an average of 0.7% annually
- ⊘ 20-year Achievable Potential is 77% of Economic Potential

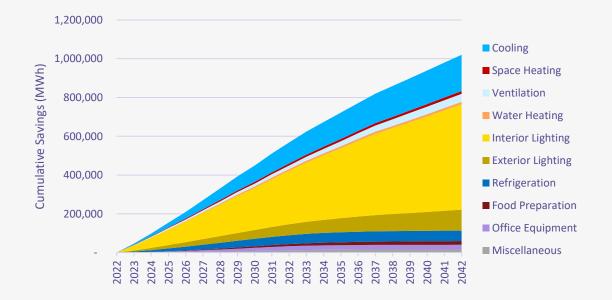


Summary of Energy Savings	2023	2027	2032	2037	2042
Baseline Projection (MWh)	9,870,603	10,394,033	11,111,002	11,849,126	12,656,700
Cumulative Savings (MWh)					
Achievable Potential	100,541	524,826	1,023,608	1,411,274	1,683,487
Economic Potential	214,469	872,087	1,479,698	1,916,592	2,208,520
Technical Potential	335,372	1,323,077	2,197,088	2,819,527	3,215,341
Energy Savings (% of Baseline)					
Achievable Potential	1.0%	5.0%	9.2%	11.9%	13.3%
Economic Potential	2.2%	8.4%	13.3%	16.2%	17.5%
Technical Potential	3.4%	12.7%	19.8%	23.8%	25.4%

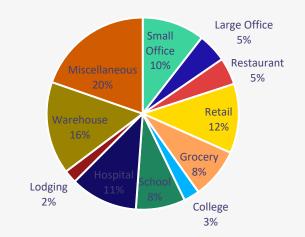
Comparison with Prior Study

Non-Residential Cumulative Achievable Potential

- Studies cover different 20-year periods and creates comparison challenges
- Sigure below compares cumulative potential by calendar year gray boxes show potential from first two years of prior study

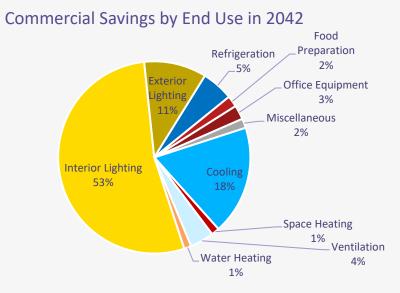


Non-Res Cumulative Achievable Potential


Commercial Potential by End Use and Segment

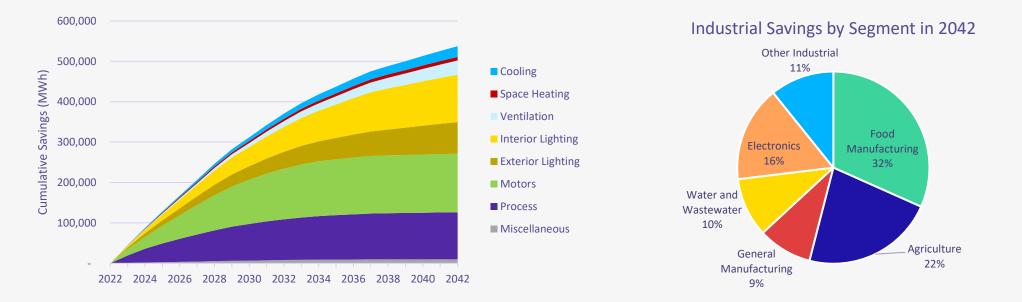
Cumulative Achievable Potential in 2042

- Solution Sector Control Contro


Commercial Savings by Segment in 2042

Commercial Top Measures – Achievable Potential

- Linear and High-Bay Lighting continue to provide the most savings, and includes lighting control technologies
- ✓ Water-Cooled Chillers and Duct Repair savings increased since previous study, due to increase of HVAC usage

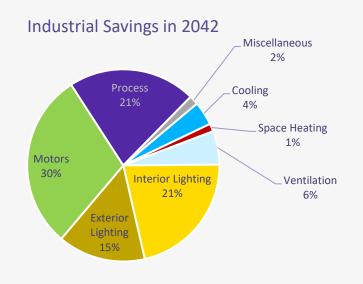


		Achievable	Achievable	
Rank	Measure		Potential in	
		2025	2042	% of Total
1	Linear Lighting	68,997	533,450	52.3%
2	High-Bay Lighting	13,260	81,942	8.0%
3	Water-Cooled Chiller	1,977	62,123	6.1%
4	Server	3,290	21,795	2.1%
5	Ducting - Repair and Sealing	3,805	21,738	2.1%
6	Retrocommissioning	15,899	16,538	1.6%
7	RTU	1,008	14,701	1.4%
8	Engine Block Heater Controls	1,330	13,898	1.4%
9	Ventilation - Variable Speed Control	10	13,456	1.3%
10	Air-Source Heat Pump	526	12,252	1.2%
11	Refrigeration - Heat Recovery	1,458	11,877	1.2%
12	Refrigeration - Variable Speed Compressor	3,156	11,536	1.1%
13	Air-Cooled Chiller	473	11,061	1.1%
14	Grocery - Display Case - Door Retrofit	1,385	11,042	1.1%
15	Area Lighting	1,595	9,792	1.0%
16	Ventilation	568	9,504	0.9%
17	General Service Lighting	2,801	9,233	0.9%
18	Oven	672	8,859	0.9%
19	HVAC - Maintenance	1,755	8,829	0.9%
20	Hot Food Container	453	8,222	0.8%
	Total of Top 20 Measures	124,416	891,849	87.4%
	Total Cumulative Savings	154,677	1,020,034	100.0%

Industrial Potential by End Use and Segment

Cumulative Achievable Potential in 2042

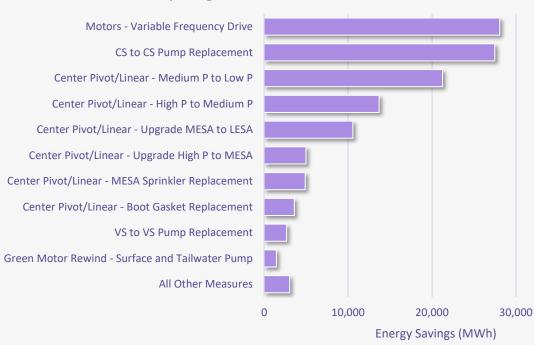
- ✓ Ramp rates for this sector reflect the maturity of IPC's industrial programs
- Savings in the motors end use are made up of VFD measures, as well as Compressed Air and pumping equipment upgrades
- Solution the sector come from replacement of High-Bay Lighting to LEDs


Applied Energy Group, Inc. | appliedenergygroup.com

Industrial Top Measures – Achievable Potential

Industrial Sector

- Some Compressed Air measures from previous study were consolidated in the 2021 Power Plan
- Linear and High-Bay includes savings incorporate lighting control technologies


Rank	Measure		Achievable Potential in	
		2025	2042	% of Total
1	Linear Lighting	12,143	117,049	21.8%
2	High-Bay Lighting	8,338	65,528	12.2%
3	Strategic Energy Management	19,837	44,182	8.2%
4	Refrigeration - Floating Head Pressure	14,768	37,304	6.9%
5	Ventilation	1,487	32,949	6.1%
6	Refrigeration - High Efficiency Compressor	10,520	26,381	4.9%
7	Pumping System - Controls	2,786	22,411	4.2%
8	Refrigeration - System Optimization	8,702	21,037	3.9%
9	Compressed Air - End Use Optimization	10,557	15,066	2.8%
10	Switch from Belt Drive to Direct Drive	1,834	13,598	2.5%
11	Material Handling - Variable Speed Drive	2,925	13,424	2.5%
12	Process - Tank Insulation	4,397	12,477	2.3%
13	Water-Cooled Chiller	491	11,850	2.2%
14	Advanced Industrial Motors	1,201	9,880	1.8%
15	Fan System - Equipment Upgrade	1,075	9,009	1.7%
16	Municipal Sewage Treatment - Optimization	5,923	8,462	1.6%
17	Pumping System - System Optimization	1,018	7,130	1.3%
18	Fan System - Controls	856	6,911	1.3%
19	High Frequency Battery Chargers	1,341	6,599	1.2%
20	Air-Cooled Chiller	248	5,536	1.0%
	Total of Top 20 Measures	110,445	486,781	90.6%
	Total Cumulative Savings	128,091	537,211	100.0%

Irrigation Top Measures – Achievable Potential

✓ Potential savings are similar to previous study

Top Irrigation Measures in 2042

Rank	Measure		Achievable Potential in 2042	% of Total
1	Motors - Variable Frequency Drive	11,058	28,065	22.2%
2	CS to CS Pump Replacement	8,765	27,478	21.8%
3	Center Pivot/Linear - Medium P to Low P	43	21,254	16.8%
4	Center Pivot/Linear - High P to Medium P	83	13,695	10.8%
5	Center Pivot/Linear - Upgrade MESA to LESA	22	10,569	8.4%
6	Center Pivot/Linear - Upgrade High P to MESA	846	4,985	3.9%
7	Center Pivot/Linear - MESA Sprinkler Replacement	2,589	4,885	3.9%
8	Center Pivot/Linear - Boot Gasket Replacement	1,123	3,588	2.8%
9	VS to VS Pump Replacement	854	2,679	2.1%
10	Green Motor Rewind - Surface and Tailwater Pump	484	1,450	1.1%
11	Thunderbird - Hub Replacement	370	1,419	1.1%
12	Green Motor Rewind - Well Pump	400	1,198	0.9%
13	Wheel/Hand - Nozzle Replacement	725	1,087	0.9%
14	Center Pivot/Linear - High P Sprinkler Replacement	624	920	0.7%
15	Wheel-Line - Convert to Low Pressure System (Alfalfa)	2	894	0.7%
16	Wheel/Hand - Gasket Replacement	453	868	0.7%
17	Wheel/Hand - Drain Replacement	293	556	0.4%
18	Green Motor Rewind - Booster Pump	173	518	0.4%
19	Hand-Line - Convert to Low Pressure System (Alfalfa)	0	137	0.1%
	Total of Top Measures	28,907	126,242	100.0%
	Total Cumulative Savings	28,907	126,242	100.0%

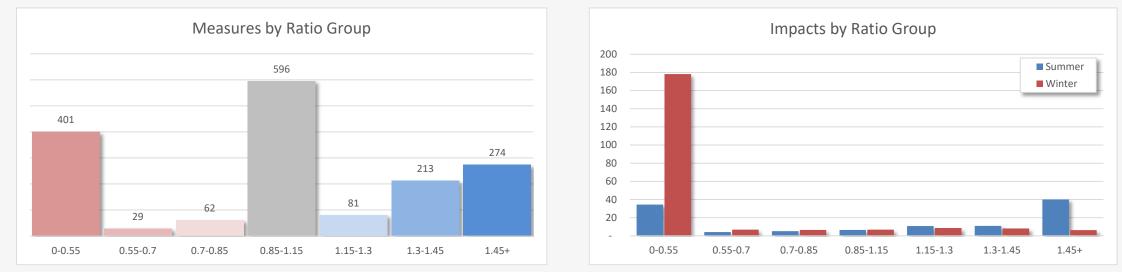
IRP Bundling

Review of 2021 IRP Bundling

Objectives

- ⊘ Include the identified economic potential as a resource in IRP modeling
- ⊘ Allow the IRP to identify additional energy efficiency resources based on resource needs and cost relative to resource alternatives
- - Resource shape (e.g., measures with impacts concentrated during the summer peak)

• Cost


Sensure that measure bundles are large enough to be able to affect IRP resource decisions (e.g., MWs, not kWs)

2021 IRP Bundling Methodology

Solution For each measure not included in the economic potential, AEG calculated the ratio of summer to winter impacts,

- Ratios near 1.0 indicate measures with minimal seasonal variation (e.g., refrigeration)
- Higher ratios = Larger summer impacts (blue bars)
- Lower Ratios = Larger winter impacts (red bars)
- - Summer weekdays: August 8-10 pm
 - Winter weekdays: January 8-9 am

Key Findings from 2021 IRP Bundling

- All bundles provide impacts in both seasons, but impacts for each bundle were higher in the season identified by the measure ratios
- Potential for demand reduction was significantly higher in the winter, driven by the winter-focused bundles
 - Reminder: Economic Achievable Potential is not included in these graphs and will tend to have higher summer impacts due to • higher avoided costs in that season
- The bundling approach met the identified objectives and Idaho Power and AEG plan to use the same approach for \bigcirc the 2023 IRP

Demand Response

Approach to the Study

participant overlap

Data Sources/Collection

Program Impact and Cost assumptions mainly based on NWPCC 2021 Power Plan

- ✓ Customize for Idaho Power's service territory
- ✓ Will diverge from Council assumptions where appropriate

Supplement with data specific to the demand response potential assessment from Idaho Power:

- ⊘ Peak period definitions
- Residential End Use Survey results
- Surrent DR program data, including recent impact evaluations
 - Irrigation Peak Rewards
 - Flex Peak
 - A/C Cool Credit
- ✓ Incorporate planned changes to existing programs
 - Extended season, later event windows, increased incentives
 - Updated enrollment info available in mid-May

Program Options to Assess

- ✓ Model the demand response programs and rates included in the Council's 2021 Power Plan.
- Sased on the value to Idaho Power's system, the analysis will focus on summer programs but incorporate the winter impacts and other assumptions as relevant.

Residential	Commercial	Industrial/Irrigation
Residential Critical Peak Pricing*	Commercial Critical Peak Pricing*	Industrial Critical Peak Pricing*
Residential Time of Use*	Small Commercial Bring-Your- Own-Thermostat*	Industrial Real Time Pricing*
Residential Electric Vehicle Supply Equipment Control*	Commercial Curtailable Load*	Industrial Curtailable Load*
Residential Electric Resistance Water Heater Control Grid and Switch*	Commercial Small Building AC Load Control Switch	Irrigation Control Large and Small/Medium Farms
Residential Heat Pump Water Heater Control Grid and Switch*	Commercial Medium Building AC Load Control Switch	
Residential AC Load Control Switch		
Residential Bring-Your-Own- Thermostat*		

* Winter impacts available

Assumptions and Updates

AEG and Idaho Power are currently reviewing Council assumptions for appropriateness. Key considerations include:

Idaho Power's Window of Need

- ⊘ Not necessarily at system peak; later in the day when solar resources are no longer available.
- ⊘ Need to investigate how well Council assumptions support this shift.

Include Full Incentive Costs

The Council uses a Total Resource Cost (TRC) perspective for cost-effectiveness, which only counts a portion of the incentive as a proxy for participant costs. Idaho Power uses a Utility Cost Test (UCT) perspective, so full incentives should be counted.

Costs to Upgrade/Implement Software

✓ The Council cost assumptions may not include the costs of upgrading/implementing all of the software to support programs. Estimating these costs can be difficult (particularly rate programs).

Developing Demand Response Resource Costs

- DR Programs have both upfront and ongoing costs according to the table below
- OR costs are levelized over the 20 year forecast
- ✓ Levelized costs are presented in \$/kW-year

One-Time Fixed Costs	One-Time Variable Costs	Ongoing Costs
Program Development Costs (\$/program)	Equipment Costs (\$/participant)	Administrative Costs (shared costs)
	Marketing Costs (\$/participant)	O&M Costs (\$/participant)
		Incentives (\$/participant or \$/kW)

- ⊘ Consider how to spread winter and summer costs (Council assumes a 50/50 split)
- Sundle development and administrative costs for programs that will be administered together, e.g., grid-interactive and switch-controlled water heating

Applied Energy Group, Inc. | appliedenergygroup.com

Estimate DR Potential

To estimate DR potential, AEG will apply the technology and program data/assumptions to the baseline demand projection.

1. Technical Achievable Potential

- ⊘ Potential for each program option in isolation.
- Demand reductions for each program given expected customer participation <u>without</u> regard to program competition
- Incorporates program ramp-up time to provide a realistic estimate of the impacts in each year of the planning period
- Total identified potential from all programs is not achievable, but lays the groundwork for incorporating program hierarchy

2. Achievable Potential

- Demand reductions for each program given expected customer participation accounting for competition between programs (i.e., program options are stackable)
- Incorporates program ramp-up time to provide a realistic estimate of the impacts in each year of the planning period
- ⊘ Does not account for program economics, i.e., the cost-effectiveness of the programs in each year.

AEG will provide a cost per kW-year of potential but will not perform economic screening (will be performed in the IRP model)

Thank You.

Eli Morris emorris@appliedenergygroup.com

Neil Grigsby ngrigsby@appliedenergygroup.com

Maggie Buffum mbuffum@appliedenergygroup.com

Fuong Nguyen fnguyen@appliedenergygroup.com

Phone: 631-434-1414