

Portfolio Reliability Analysis

2025 Integrated Resource Plan

Dr. Andrés Valdepeña Delgado System Consulting Engineer Shelby McNeilly Resource Planning Engineer

Topics

CONTRACTOR OF CONTRACTOR OF C

2025 Integrated Resource Plan Preliminary Reliability Results

- Integrated Resource Plan Relevance
- Model Calibration Process
- Preliminary Base Portfolio Reliability Assessment
- Comparison of Preliminary Portfolios

Helpful Acronyms

Acronym	Meaning		Acronym	Meaning		
BESS	Battery Energy Storage System		LOLP	Loss of Load Probability		
ccs	Carbon Capture Sequestration L&R Load & Resource					
EE	Energy Efficiency		LTCE	Long-Term Capacity Expansion		
ELCC	Effective Load Carrying Capability		MW	Megawatt		
EPA	Environmental Protection Agency	NG	Natural Gas			
IRP	Integrated Resource Plan		PRB	Powder River Basin		
LOLE	Loss of Load Expectation		PRM	Planning Reserve Margin		
LOLH	Loss of Load Hour		RCAT	Reliability & Capacity Assessment Tool		

Idaho Power Integrated Resource Plan Acronym List Link

IRP Educational Resources

IDAHO POWER®

Home > Energy and the Environment > Energy > Planning and Electrical Projects > Our 20-Year Plan > Educational Resources

IRP Questions and Responses
Educational Resources

Idaho Power has compiled these resources to help those participating in our *Integrated Resource Plan* (IRP) process or anyone who wants to know more about how their energy is generated and delivered. We will add links, presentations and videos as they become available.

A Deep Dive into How Idaho Power Assesses Reliability & Capacity in the IRP

Idaho Power Educational Resources Link

IRP Relevance

EXIDAHO POWER®

2025 IRP Model Calibration

Preliminary Base Portfolio

Bridger Natural Gas with EPA 111(d) Rule Included

			Converted	New				4-Hour	8-Hour	100-Hour		Pumped		Demand	EE
Year	Transmission	Coal	Gas	Gas	Hydrogen	Wind	Solar	BESS	BESS	BESS	Geothermal	Hydro	Nuclear	Response	Bundles
2026	0	(134)	261	0	0	0	125	250	0	0	0	0	0	0	0
2027	0	0	0	0	0	600	420	100	0	0	0	0	0	0	0
2028	B2H / 4C	0	0	0	0	0	100	200	0	0	0	0	0	0	0
2029	SWIP-N	0	0	150	0	100	0	155	0	0	0	0	0	10	0
2030	0	(350)	350	300	0	0	100	0	0	0	0	0	0	0	0
2031	0	0	0	0	0	0	400	0	0	0	0	0	0	0	8
2032	0	0	0	0	0	0	200	0	0	0	0	0	0	0	0
2033	0	0	0	0	0	0	100	50	0	0	0	0	0	0	21
2034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
2035	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
2036	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
2037	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2040	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
2041	0	0	0	50	0	0	0	5	0	0	0	0	0	0	0
2042	0	0	0	0	0	0	0	5	0	0	0	0	0	10	3
2043	0	0	0	50	0	0	0	5	0	0	0	0	0	0	0
2044	0	0	0	0	0	0	0	55	0	0	0	0	0	0	7
2045	0	0	0	0	0	0	0	5	0	50	0	0	0	0	2
Change		(484)	611	550	0	700	1,445	835	0	50	0	0	0	20	58

Loss of Load Hour Metric

Loss of Load Hour

LOLH: the expected number of hours per time period when a system's hourly demand is projected to exceed the generating capacity

From 2024 IEEE Fundamentals of Resource Adequacy for Modern Power Systems Morning Session

From the above Basic Example
Total Hours of Shortfall = 9 Hours
Shortfall Event Count = 6 Events

$$LOLH = \sum_{i=1}^{H} LOLP_i$$

Annual Loss of Load Hour

Preliminary Base Bridger Natural Gas with EPA 111(d) Rule Included

Loss of Load Expectation Metric

Loss of Load Expectation

LOLE: the expected number of days per time period for which the available generation capacity is insufficient to serve the demand at least once per day

$$LOLE = \sum_{d=1}^{D} \max[_{i=1}^{H} (LOLP_i)]$$

From 2024 IEEE Fundamentals of Resource Adequacy for Modern Power Systems Morning Session

From the above Basic Example
Total Hours of Shortfall = 9 Hours
Shortfall Event Count = 6 Events

Annual Loss of Load Expectation

0.12 0.10 Annual LOLE (Event-Days per Year) 0.08 0.06 0.04 0.02 0.00 2035 2036 2037 2038 2039 2080 PORT 202 2029 2030 POJA PORT PORS 2026 203. 2037 2033 PORA PORS Load & Resource Year

Annual Capacity Positions

- All main case portfolios must be in a position of capacity length for each year in the planning horizon to be deemed reliable
- Capacity length does not represent surplus capacity
 - Capacity length is the Company's annual position to meet the 0.1 event-days per year Loss of Load Expectation ("LOLE") threshold for a tuned-portfolio
 - The capacity position calculation considers all fully-subscribed firm transmission, meaning capacity length reflects a decreased need in capacity-driven market imports

CIDAHO POMER

Annual Capacity Positions

Preliminary Base Bridger Natural Gas with EPA 111(d) Rule Included

Seasonal Loss of Load Expectation

Preliminary Base Bridger Natural Gas with EPA 111(d) Rule Included

Effective Load Carrying Capability

Preliminary Base Bridger Natural Gas with EPA 111(d) Rule Included

			4-Hour
Year	Solar	Wind	BESS
2026	125	0	250
2027	420	600	100
2028	100	0	200
2029	0	100	155
2030	100	0	0
2031	400	0	0
2032	200	0	0
2033	100	0	50
2034	0	0	0
2035	0	0	0
2036	0	0	0
2037	0	0	0
2038	0	0	0
2039	0	0	0
2040	0	0	5
2041	0	0	5
2042	0	0	5
2043	0	0	5
2044	0	0	55
2045	0	0	5
Change	1,445	700	835

The Effective Load Carrying Capability ("ELCC") is a reliabilitybased metric that assesses an individual resource's contribution to the overall system reliability

 The ELCC calculation is driven by the timing of high Loss of Load Probability ("LOLP") hours & is a function of the resource buildout

> Calculating the ELCC of the next 100 MW

Annual Loss of Load Expectation

CONTRACTOR OF CONTRACTOR OF C

All Preliminary Portfolios

Base Portfolios

- With 111(d) Rule
 - Bridger NG Conversion
 - Bridger No Conversion
 - Bridger CCS Conversion
 - Bridger NG Conversion No Gas 2029
 - Bridger NG Conversion No Gas 2029/2030
 - Bridger NG Conversion Smaller Gas 2030
- Without 111(d) Rule
 - Bridger PRB Conversion
 - Bridger NG Conversion
- Large Load Cases with 111(d) Rule
 - 300 MW Large Load
 - 500 MW Large Load
- Clean by 2045

All listed preliminary portfolios meet Idaho Power's reliability threshold & are in a position of capacity length for the entire planning horizon

Annual Loss of Load Expectation

All Preliminary Portfolios

