

Idaho Power Oregon Distribution System Planning

DSP – Public Meeting #4 June 6th, 2022

-

Welcome!

Thank you

for attending Idaho Power Company's Distribution System Planning (DSP) Process

Workshop #4

DSP Workshop Goals

- Provide information to enable participation
- Input and feedback on Traditional/Non-Wire Solution (NWS) Reviewed
 - Community impact
 - Project options/alternatives

Agenda

- Short review
- Solution evaluation criteria
- Review distribution grid needs
- Evaluate distribution grid need solutions
- Gather community input on solutions

Guidelines

- Post comments and question in the chat
- Please feel free to speak up and engage throughout
- Please keep the discussion civil and respectful
- Take comments with positive intent

Introductions

In the chat, please send us:

- Name
- Organization

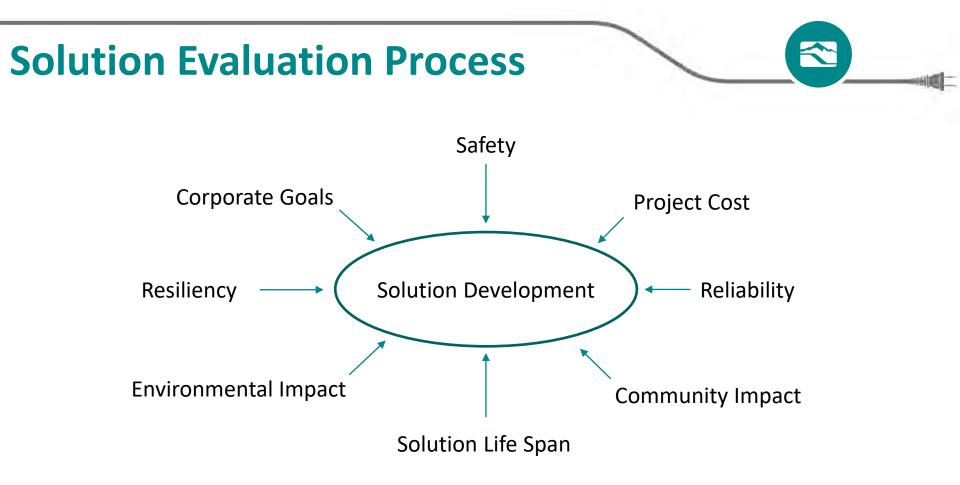
You can also send us more information at DSP@idahopower.com

Idaho Power Team

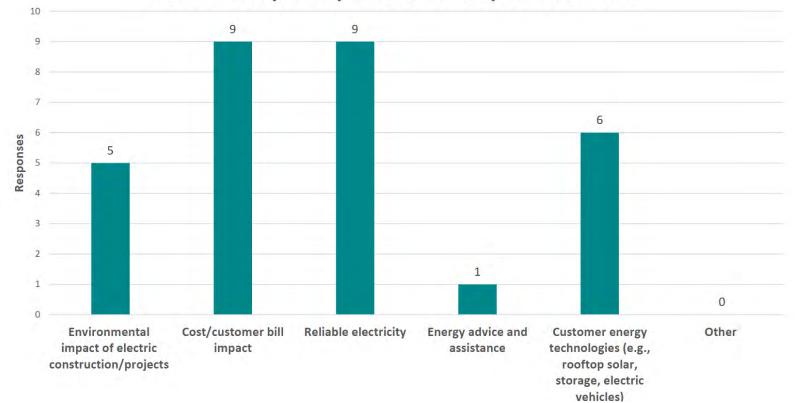
Name	Position	Name	Position
Jared Ellsworth	Transmission, Distribution & Resource Planning Director	Angelique Rood	Regional Manager
Jim Burdick	Distribution Planning Engineering Leader	Dena McFarlin	Regional Customer Relations Manager
Marc Patterson	Transmission & Distribution Strategy Engineer	Mike Ybarguen	Economic & Community Development Advisor
Tyson Kent	Distribution Planning Engineer	Danielle Ready	Education & Outreach Energy Advisor
Dan Johnston	Transmission & Distribution Strategy Engineer	Rodolfo Beltran	Key Account Energy Advisor
Alison Williams	Regulatory Policy & Strategy Advisor Regulatory Affairs	Duane Pearson	Agriculture Representative

Traditional Solution Review

Traditional Solutions – Solutions that have been used historically for infrastructure upgrades

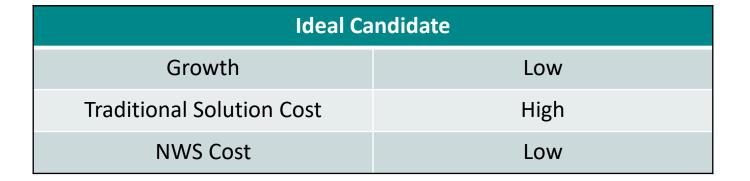

 \uparrow

Non-Wire Solution (NWS) Review


Non-Wire Solutions (NWS) - New renewable technologies that can limit or defer infrastructure upgrades

Community Input

Please select your top three electricity considerations:


NWS Screening of Grid Needs

NWS Screening Matrix

Project Evaluation Factors	(Low/Medium/High)	Evaluation Ranges
	Low	< 1%
Growth	Medium	> 1% and < 3%
	High	> 3%
	Low	< \$100k
Traditional Solution Cost	Medium	> \$100k and < \$1M
	High	> \$1M
	Low	< \$100k
NWS Cost	Medium	> \$100k and < \$1M
	High	> \$1M

NWS Screening Matrix

Community Input

NWS Project Screening Review

- Review the projects
- Input questions:
 - Community impact (benefits/concerns)?
 - Project options/modifications?
 - Other thoughts?
 - After we have reviewed all the projects -
 - Projects that you find most interesting?

Detailed Distribution Grid Needs 2023 - 2026

Area Impacted	Grid Need – Traditional Solution	Traditional Project Cost
Adrian	Line protection equipment does not record information - replace with modern smart recloser	\$21,000
Vale - Fuse	Limit outage impact - Add fuses	\$38,000
Vale - Regulator	Low voltage on feeder - Add regulator	\$48,000
Halfway	Regulator planning capacity at limit - Upgrade regulator capacity	\$51,500
Cow Valley	Low voltage on feeder - Add regulator	\$58,000

Distribution Line Equipment

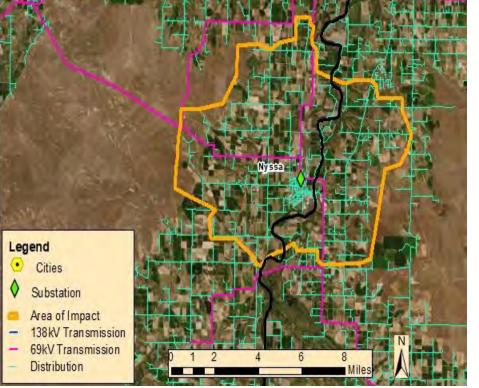
2023 – 2026 Project List Matrix

	Ideal NWS Candidate
Growth	Low
Traditional Solution Cost	High
NWS Cost	Low

	Adrian	Vale - Fuse	Vale - Regulator	Halfway	Cow Valley
Growth	Low	Low	Low	Medium	Medium
Traditional Solution Cost	Low	Low	Low	Low	Low
NWS Cost	Medium	Medium	Medium	Medium	Medium

Project Focus

- Community impact (benefits/concerns)?
- Project options/modifications?
- Other thoughts?


Detailed Distribution Grid Needs 2027 - 2028

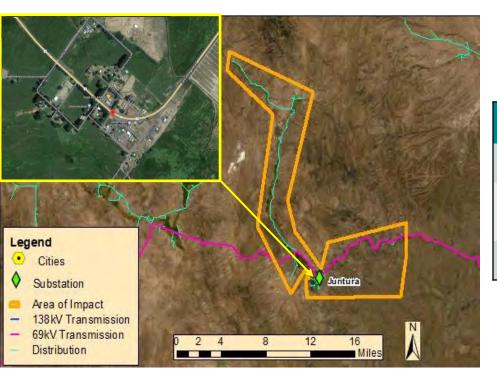
Area Impacted	Grid Need – Traditional Solution	Traditional Project Cost
Nyssa	Transformer capacity limit, transformer upgrade	\$1,716,000
Juntura	Transformer capacity limit, transformer upgrade	\$294,000
Jamieson	Transformer capacity limit, transformer upgrade	\$837,600

Nyssa Substation Transformer Upgrade

Nyssa Substation Transformer Upgrade

Nyssa Transformer

Growth	Medium
Traditional Solution	
Cost	High
NWS Cost	High


Project Focus

- Community Impact?
- Project options/modifications?
- Other Thoughts?

Juntura Substation Transformer Upgrade

Juntura Substation Transformer Upgrade

Growth	Low
Traditional Solution	
Cost	Medium
NWS Cost	Low


Project Assessment

- Community Impact (benefits/concerns)?
- Project options/modifications?
- Other Thoughts?

Jamieson Substation Transformer Upgrade

Jamieson Substation Transformer Upgrade

Jamieson Transformer

Growth	Low
Traditional Solution	
Cost	Medium
NWS Cost	High

Project Focus

- Community Impact?
- Project options/modifications?
- Other Thoughts?

• Projects that you find most interesting?

Final Thoughts

