

Getting to Know Our Distribution System

DSP – Public Meeting #1 August 26, 2021

Welcome!

Thank you for attending the initial workshop for Idaho Power Company's Distribution System Planning (DSP) Process

Agenda

- Quick Background: Why Are We Here?
- Introductions
- Power Grid 101
- Eastern Oregon Distribution System
- Planning Processes
- Distribution System Planning

Ground Rules

- Post comments and questions in the chat
- Please feel free to speak up and engage throughout
- Please keep discussion civil and respectful
- Take comments with positive intent

Man with curly hair about to dive into the water

Man with curly hair about to dive into the water

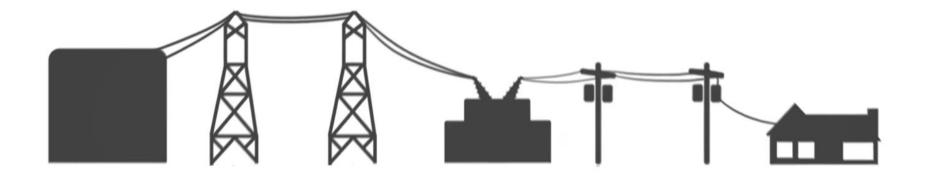
Balanced Input

Introductions

In the chat, please send us:

- Name
- Organization
- What are you most interested in learning about in these workshops?

You can also send us more information at DSP@idahopower.com


Idaho Power Team

Name	Position	Name	Position
Jared Ellsworth	Transmission, Distribution & Resource Planning Director	Angelique Rood	Regional Manager
Jim Burdick	Distribution Planning Engineering Leader	Dena McFarlin	Regional Customer Relations Manager
Marc Patterson	Transmission & Distribution Strategy Engineer	Mike Ybarguen	Economic & Community Development Advisor
Chris Cockrell	Distribution Planning Engineer	Danielle Ready	Education & Outreach Energy Advisor
Tyson Kent	Distribution Planning Engineer	Rodolfo Beltran	Key Account Energy Advisor
Alison Williams	Regulatory Policy & Strategy Advisor Regulatory Affairs	Duane Pearson	Agriculture Representative
Kelley Noe	Regulatory Consultant	Lisa Nordstrom	Legal Counsel

Poll Question

Power Grid 101

Power

The rate at which work is performed:

• Megawatt (MW)

1 MW

Average Day	Hottest Day		
650 Homes	300 Homes		
Large Box Store	Large Box Store		

Capacity

The amount of power an element can handle

• The unit is the same as it is for power (MW)

Planning for Capacity

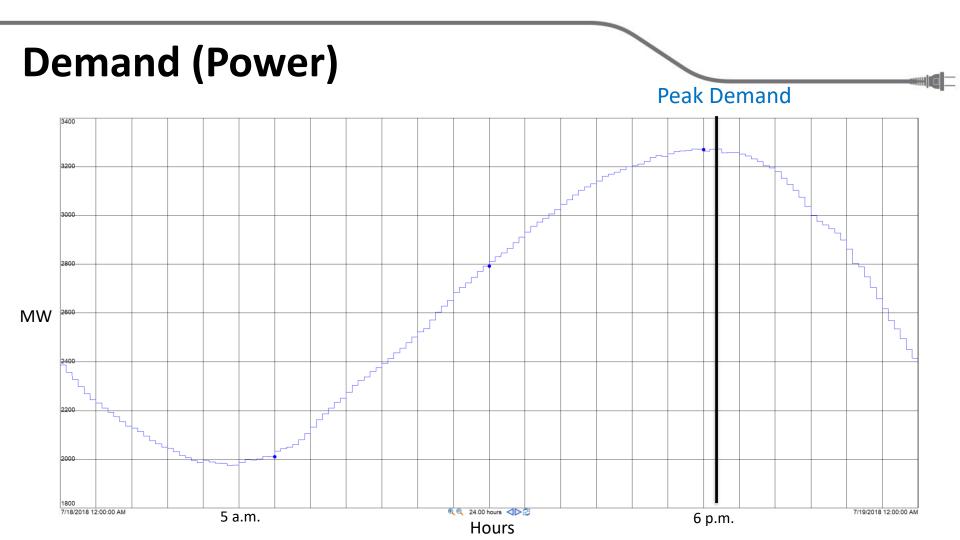
Options: Reduce Need Larger Facilities New Facilities

Capacity

Energy

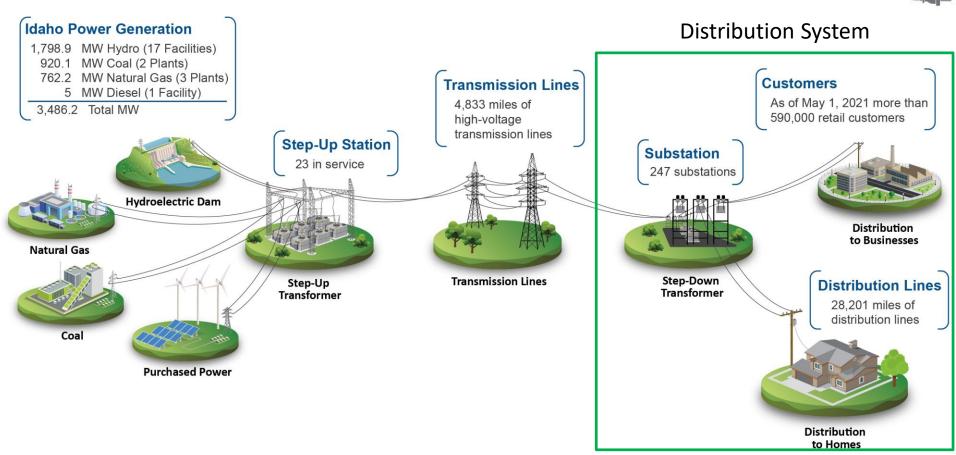
The amount of power used in a given period:

kilowatt-hour (kWh) = unit of measure for electrical energy



Energy vs Capacity Analogy

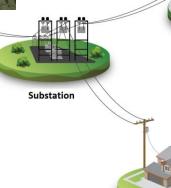
• Capacity: 2 vehicles at a time


• Energy: 1,000 vehicles pass the line in an hour

Typical Units for Power Delivery

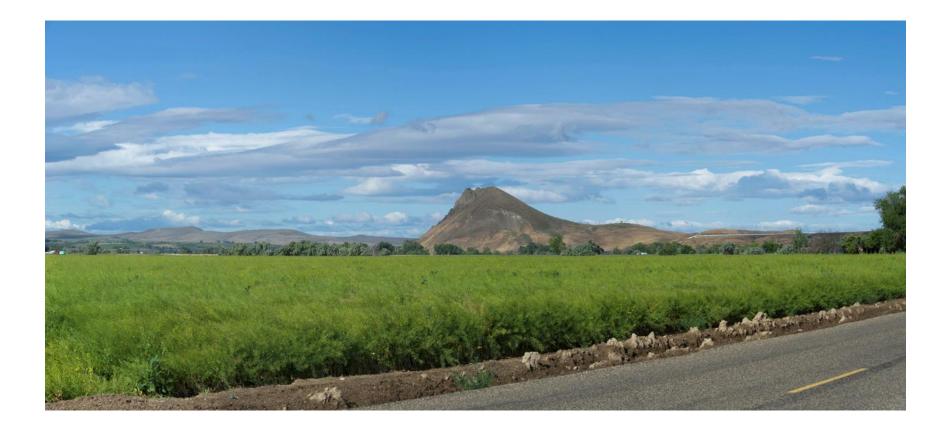
	Base Unit	Typical Unit	
Voltage	Volt (V)	kilovolt (kV)*	kilo = 1,000
Power	Watt (W)	megawatt (MW)**	
Capacity	Watt (W)	megawatt (MW)**	mega = 1,000,000
Energy	Watt-hours (Wh)	kilowatt-hours (kWh)	

Power Grid



Distribution System

- 12.5 kV and 34.5 kV
- Overhead or underground
- From the substation to your homes and businesses


Distribution to Businesses

Distribution to homes

Poll Question

Eastern Oregon Distribution System

Idaho Power in Oregon

Average system load **83 Megawatts**

Idaho Power's Service Area hhhhhh Oregon 20,477 Customers 20,477

Ontaric

Vale ∽Nyssa

4,000 Square miles

Idaho Power Distribution System Goal

"To <u>safely</u>, <u>reliably</u>, and <u>cost-effectively</u> meet near- and long-term load service requirements."

Our Clean-Energy Goal

As Idaho Power continues serving customers and communities with **reliable**, **affordable** energy, we do so with an exciting goal:

Partner with customers to meet their energy needs and achieve our clean-energy goal

Energy Flow

• The distribution system allows energy to flow in either direction.

Utility Scale Renewables in Oregon

17 projects (15MW or under)

- 17 projects online, totaling 129 MW
- 1 project is scheduled to come online in 2022

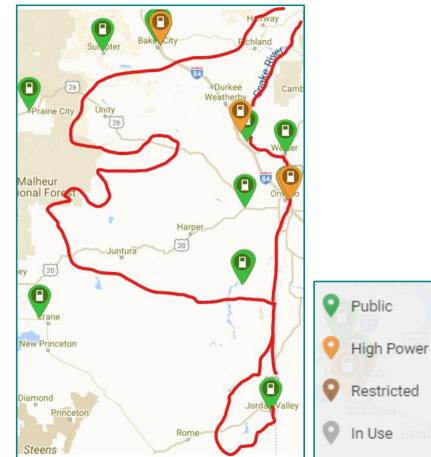
Incremental Project Additions

Year	Resource	No. of Projects	Size
2016	Solar	6	49.5
2017	Wind	5	50
2018	N/A	N/A	N/A
2019	Solar	1	2.75
2020	Solar	4	24.0

Customer-Owned Generation

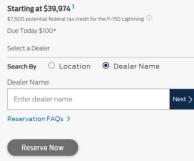
Solar Customer Generation & Net Metering

69 projects (1.37 MW total) are connected under the company's net metering tariff (through end of 2020)


Incremental Customer Solar Generation in eastern Oregon			
Installation Year	# Solar Projects	Size (MW)	
2014	3	0.21	
2015	10	0.24	
2016	5	0.25	
2017	13	0.15	
2018	10	0.14	
2019	12	0.13	
2020	6	0.09	

Electric Vehicles (EVs)

EV Charging Stations in Oregon

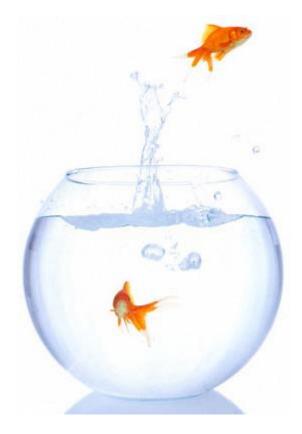


Many New EVs Coming

TESLA

2022 F-150 LIGHTNING

SINGLE MOTOR RWD	\$39,900
DUAL MOTOR AWD	\$49,900
TRI MOTOR AWD	\$69,900
+ FULL SELF-DRIVING	\$10.000


JE	TODAY		

Fully refundable. You will be able to complete your configuration as production nears in 2022.

\$100

Planning for Capacity

Options: Reduce Need

Energy Efficiency Programs

Energy Efficient Programs

Residential

Easy Savings: Low-Income Energy Efficiency Education Education Distributions Energy Efficient Lighting Energy House Calls Heating & Cooling Efficiency Program Home Energy Audit Home Energy Report Pilot Program Multifamily Energy Savings Program Oregon Residential Weatherization

Rebate Advantage

Residential New Construction Pilot Program

Simple Steps, Smart Savings™

Weatherization Assistance for Qualified Customers

Weatherization Solutions for Eligible Customers

Energy Efficient Programs

Commercial

Commercial Energy-Savings Kits

Custom Projects

Green Motors - Industrial

New Construction

Retrofits

Irrigation

Green Motors - Irrigation

Irrigation Efficiency Rewards

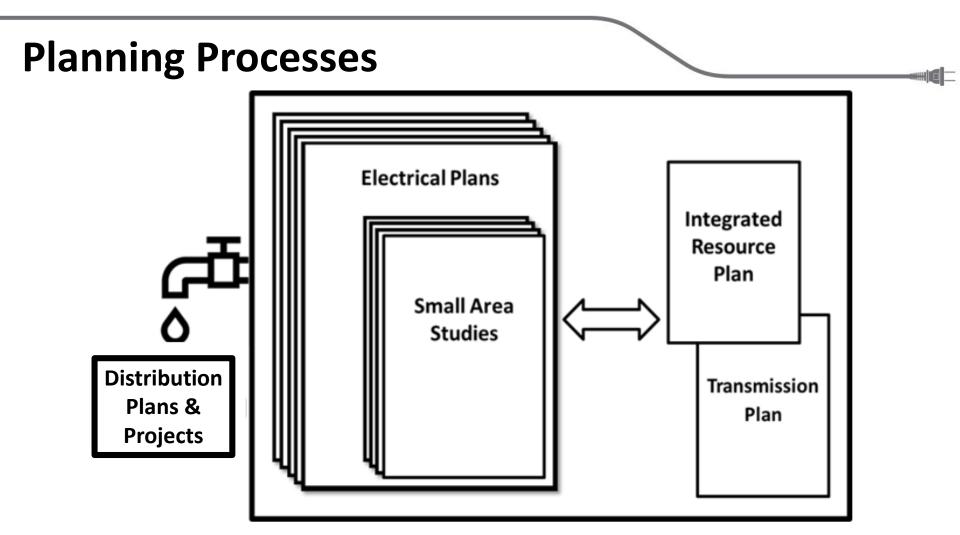
Market Transformation

Northwest Energy Efficiency Alliance (NEEA)

https://www.idahopower.com/accounts-service/constructionremodeling/energy-efficiency-information/

Idaho Power Demand Response Programs

- Irrigation Peak Rewards ~ Oregon 9.5 MW (320 MW System)
- Commercial & Industrial Flex Peak ~ Oregon 11.9 MW (35 MW System)
- Residential A/C Cool Credit ~ Oregon 0.3 MW (35 MW System)



Public Involvement and Input

- Energy Efficiency Advisory Group (EEAG)
 - Meets Quarterly to advise on DSM programs
 - Members
 - Idaho and Oregon Public Utility Commissions
 - Environmental Organizations
 - State & Local Government
 - Irrigation/Commercial/Industrial Sectors
- Organizations
 - Northwest Energy Efficiency Alliance (NEEA)
 - Regional Technical Forum (RTF)
 - E Source/ACEEE/CEE

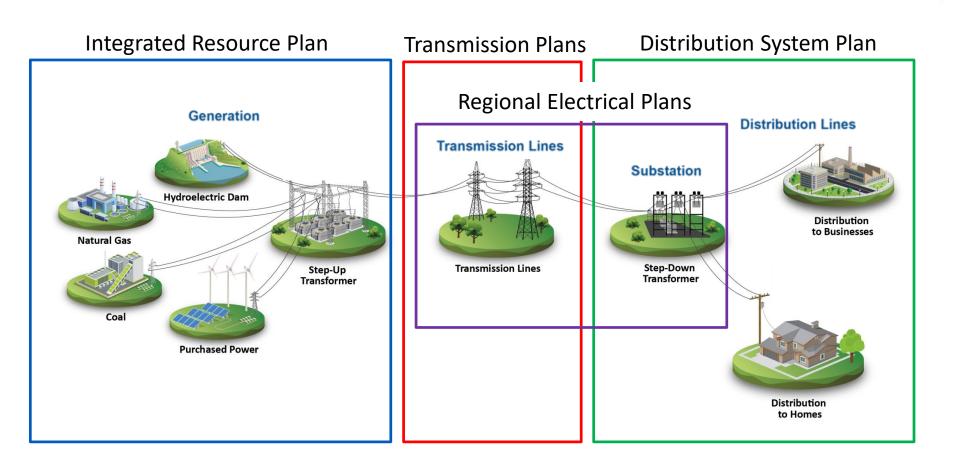
Poll Questions

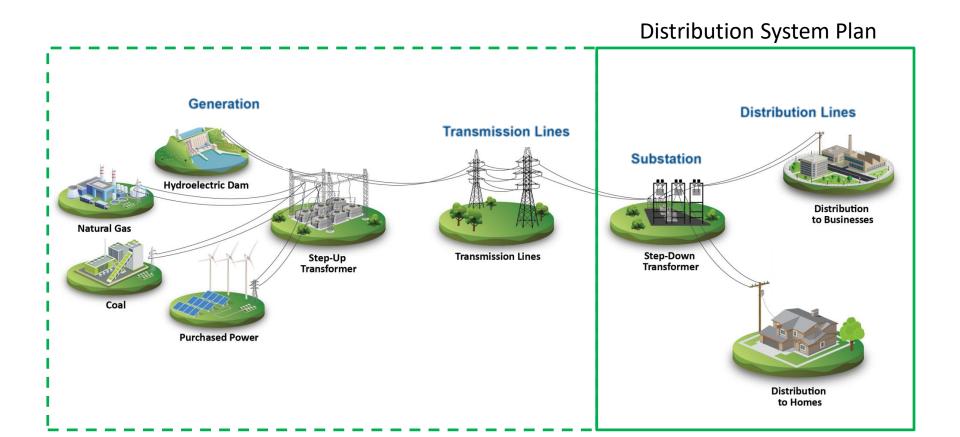
Integrated Resource Plan

- Long-term plan to balance system loads, resources, and costs
 - system load growth projections
 - future energy cost estimates
 - energy efficiency programs
 - future energy resource projections
- Stakeholder participation
 - provide input on load, energy, and resource scenarios to analyze
 - provide feedback on analysis methods and outcomes

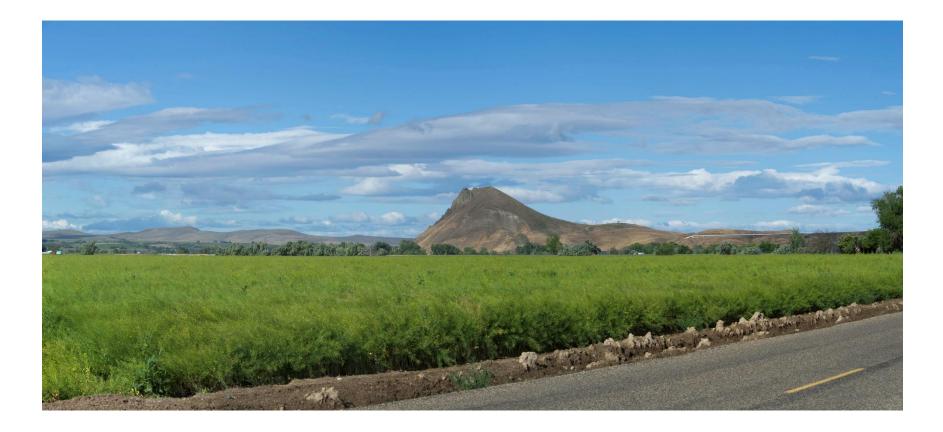
Regional & Local Transmission Plans

- Present long-term (10-20 year) transmission plans
- Considers power flow on transmission system
- Gather feedback from stakeholders
- Regional coordination with other utilities



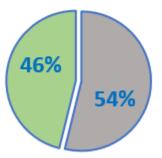

Regional Electrical Plans

- Long-term (20+ year) planning for transmission lines and substations
- Community advisory committee process
 - Prioritize reliability, environmental impact, and future energy needs
 - Identify preferred future locations for transmission lines and substations
 - Does not include distribution lines


Small Area Studies

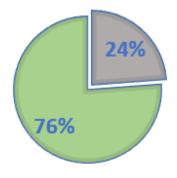
- 1. Review of single substation and connected distribution facilities
- 2. Three-year rotation, or more often if needed
- 3. Forecast peak loading 1-10 years
 - Consider temperature impact on peak loads
- 4. Identify capacity constraints
- 5. Create Solutions
 - seek alignment with area electric plan
 - review non-traditional solutions (batteries, solar,...)
 - projects typically 4+ years from concept to construction

Distribution System Plan


Distribution System Planning Topics

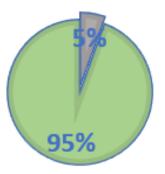
- Baseline Data
- Hosting Capacity Analysis
- Community Engagement Plan
- Long-Term Plan

Baseline Data - Eastern Oregon


• 26 Distribution Substations SUBSTATIONS WITH SCADA

🗖 No 🗖 Yes

• 63 Distribution Circuits CIRCUITS WITH SCADA



Supervisory Control and Data Acquisition - SCADA

Baseline Data - Eastern Oregon

CUSTOMERS SERVED FROM STATIONS WITH SCADA

99% of customers in eastern Oregon are served with smart meters

Hosting Capacity Analysis

- Definition: Process to provide information about the ability of a distribution system to support **new** generation without breaking
- Develop a plan for a more detailed analysis
- Develop a public facing map

Community Engagement Plan

- Community-centered approach to DSP
- Input on methodology for identifying/prioritizing distribution investments
- Input on development of pilot projects

Long-Term (5-10-year) Plan

- Integrate EVs & distributed generation forecasts
- Continue non-traditional solution reviews
- Review long-term distribution investments
- Maintain affordable prices for our customers

Poll Questions

Distribution System Discussion

- What questions do you have?
- Is there any topic you'd like to learn more about?
- What issues/topics are you specifically interested in?

Next Steps & Meeting 2

- Gather feedback from this meeting, poll questions, and email (<u>DSP@idahopower.com</u>)
- 2. Identify topics and projects for deeper discussion (less education-oriented than Meeting 1)

Thank you