

Idaho Power Oregon Distribution System Planning

DSP – Public Meeting #3 May 18th, 2022

-

Welcome!

Thank you

for attending Idaho Power Company's Distribution System Planning (DSP) Process

Workshop #3

DSP Workshop Goals

- Provide information to enable participation
- Start the conversation
- Gather community input on advancing a more holistic distribution system
- For the June 6th meeting, we are looking for input on projects that we will review at the end of this presentation

Agenda

- About Idaho Power
- Power Grid 101
- Distribution Planning Process
 - Forecasting Development
 - Grid Needs Identification
 - Solution Development
- Non-Wires Solution Examples
- Review Distribution Grid Needs

Guidelines

- Post comments and question in the chat
- Please feel free to speak up and engage throughout
- Please keep the discussion civil and respectful
- Take comments with positive intent

Introductions

In the chat, please send us:

- Name
- Organization
- What are you most interested in learning about in these workshops?

You can also send us more information at <u>DSP@idahopower.com</u>

Idaho Power Team

Name	Position	Name	Position
Jared Ellsworth	Transmission, Distribution & Resource Planning Director	Angelique Rood	Regional Manager
Jim Burdick	Distribution Planning Engineering Leader	Dena McFarlin	Regional Customer Relations Manager
Marc Patterson	Transmission & Distribution Strategy Engineer	Mike Ybarguen	Economic & Community Development Advisor
Tyson Kent	Distribution Planning Engineer	Danielle Ready	Education & Outreach Energy Advisor
Dan Johnston	Transmission & Distribution Strategy Engineer	Rodolfo Beltran	Key Account Energy Advisor
Alison Williams	Regulatory Policy & Strategy Advisor Regulatory Affairs	Duane Pearson	Agriculture Representative

Clean today. Cleaner tomorrow.

Our Clean-Energy Goal

As Idaho Power continues serving customers and communities with **reliable**, **affordable** energy, we do so with an exciting goal:

Providing 100% clean energy by 2045. Clean today. Cleaner tomorrow.®

Peak Demand and Generation

145MW Peak Demand

1.7MW Oregon Customer Generation (Net Metering)

142MW Oregon Small Generation

136MW Oregon Large Wind & Geothermal

We Are Reliable

WE KEEP THE LIGHTS ON 999.99/6 OF THE TIME

INTRODUCING OUR NEW MOBILE APP!

Idaho Power customers can now download the app to:

- Make quick and easy bill payments
- View billing and payment history
- Track power outages and view an in-app outage map
- Sign up for billing and payment programs
- Receive outage and billing push notifications
- Track energy use

Get IT ON Google Play

Power Grid 101

 \sim

- Substation
- Substation Transformer
 - Steps the voltage down from transmission voltages to distribution voltages
 - Has a voltage-regulating system to maintain distribution voltage

 \sim

- Distribution Circuit (Feeder)
 - Wires that transfer the electricity from the substation to the home or business.
 - These wires can be overhead or underground.

- Service transformer
 - Steps distribution voltage down to service voltage for use by the customer
 - Can be overhead or underground

 \sim

- Other distribution components include:
 - Voltage regulators
 - Reclosers
 - Capacitors

- Non-Wire Solution (NWS) Examples include:
 - Batteries
 - Solar
 - Wind
- These are commercially available options
- Anticipate more options in the future

The amount of power a piece of the grid can handle The unit is the same as it is for power, megawatts (MW)

Planning for Capacity

Capacity Limits

Distribution System Growth

- Residential
- Small Commercial
- Large Commercial

• Thermal Limit

 \sim

• Planning Limit

Capacity

Energy

- The amount of power used in a given period of time:
- kilowatt-hour (kWh) = unit of measure for electrical energy

Energy vs Capacity Analogy

Capacity: 2 vehicles at a time

De la construction de la constru

Energy: 1,000 vehicles pass the line in an hour

Demand (Load)

145MW, 7:00 pm Peak Demand in Oregon

Typical Units for Power Delivery

	Base Unit	Typical Unit	
Voltage	Volt (V)	kilovolt (kV)*	kilo = 1,000
Power	Watt (W)	megawatt (MW)**	mega = 1,000,000
Capacity	Watt (W)	megawatt (MW)**	
Energy	Watt-hours (Wh)	kilowatt-hours (kWh)	

Distribution Forecasting Development

- Historical Peak Demand
- Temperature Impact
- Growth from Customers

(residential/commercial/industrial)

Forecast Adjustments

- EV adoption
 - Presently 20 EVs with high forecast of 148 in 2026

- Customer Generation (aka net metering) adoption
 - Presently 1.7MW of generation capacity with a high forecast of 2.7MW in 2026 (mix of residential, irrigation, and commercial)

Low impact in the near-term forecast (2 - 4 years)

Load Forecast Example

Idaho Power Distribution Circuit Example

Distribution Grid Needs

Distribution grid needs drivers include:

- Growth and Reliability
 - Limited capacity
 - Low/high voltage
 - Frequent outages
- Asset Replacement
 - Signs of failure
 - Asset no longer supported by manufacturer
 - Line relocation due to road widening

Solution Development Toolbox

Tradition solutions

Non-Wire Solutions (NWS)

Distribution Grid Needs

 \sim

Asset Replacement Grid Needs don't typically work well with Non-Wire Solutions (NWS)

Oregon Distribution System Investment 2023 – 2026

 \uparrow

Distribution Capacity

 \checkmark

MOON42 End of Feeder PV Project

NWS Example - Moon End of Feeder

A non-wires solution for mitigating low voltage at the end of a feeder

- Sustained seasonal low voltage at the end of a long radial feeder
- Traditional Solution: Reconductor
 - Estimated cost: \$312k
 - 13 customers ~90 kW peak demand
 - Voltage regulators and capacitors not an option
- Non-wire Solution: Photovoltaic
 - 18 kW solar installed at low voltage area to increase voltage
 - PV installation cost: \$43,250
 - Total Project cost: \$132,500
 - In service October 2016

NWS Example -Jordan Valley Project

- Traditional Project Costs \$860,000
- NWS Project Costs \$544,000
- Expected to defer project for 10 Years

Microgrid-Powered Services

- 1. Substation
- 2. Ambulance
- 3. Fuel
- 4. Medical Clinic
- 5. Water
- 6. Communications (Off Map)

NWS Example - Jordan Valley Project

What would this project accomplish

- Shave peak load to prevent transformer capacity overload
- Add microgrid to serve critical community load

What equipment would be installed?

• 70-kilowatt (kW) solar system with 250-kW battery system

• Distribution switches to isolate the microgrid area

Why did Idaho Power pick Jordan Valley for this project?

- Criteria that made Jordan Valley a good candidate for a microgrid:
 - Modest growth (1.75%)
 - Summer peak energy needs
 - Improve reliability

NWS Example – WESR Battery Energy System

 $\widehat{}$

NWS Example - WESR Battery Energy System

Peak occurs summer at 9 p.m.

Modest growth <0.85% per year

Land area available for storage

Integrated Resource Plan (IRP) identified need for storage

WESR Storage Peak Shaving

Detailed Distribution Grid Needs 2023 - 2028

Substation/Feeder	Project	Need		Traditional
Identifier	Туре	Date	Grid Need - Traditional Solution	Project Cost
			Line protection equipment does not record information - replace	
ADRN11	Reliability	4/1/2023	with modern smart recloser	\$21,000
VALE13	Reliability	5/1/2023	Limit outage impact - Add fuses	\$38,000
VALE15	Growth	5/1/2023	Low voltage on feeder - Add regulator	\$48,000
HFWY12	Growth	10/1/2023	Regulator planning capacity at limit - Upgrade regulator capacity	\$51,500
CWVY12	Growth	4/1/2024	Low voltage on feeder - Add regulator	\$58,000
			Feeder capacity at limit. The project requires 4.25 mile of distribution	
HMDL12	Growth	5/1/2027	rebuild with a river crossing and other distribution devices.	\$1,074,000
			PAET12 planning feeder capacity at limit - Increase HOLY13 feeder	
			capacity by rebuilding 3.9 miles of distribution with a river crossing	
HOLY13	Growth	10/1/2027	and other distribution devices for a PAET12 load transfer.	\$897,500
NYSA T-061	Growth	5/1/2028	Transformer planning capacity at limit - Upgrade transformer capacity	\$1,716,000
JNTA T-061	Growth	5/1/2028	Transformer planning capacity at limit - Upgrade transformer capacity	\$294,000
JMSN T-061	Growth	5/1/2028	Transformer planning capacity at limit - Upgrade transformer capacity	\$837,600

 \sim

Community Input

Please select your top three electricity considerations:

Next Steps

- What other data/information is needed to prepare for a meaningful discussion on potential NWS opportunities?
- There will be a document uploaded to the <u>Idaho Power DSP</u> <u>Website</u> identifying grid needs and the issue being addressed
- For the June 6th meeting, we will the share the non-wire analysis for the identified grid needs and ask for input on those potential solutions and the community impacts

